Physics, asked by snigdha7yadav, 9 months ago

If A vector=3î+4j^ , then find the vector perpendicular to vector A in the plane of A.

Answers

Answered by shadowsabers03
8

Let the vector perpendicular to \vec{\sf{A}}=\sf{3\,\hat i+4\,\^j} be,

\longrightarrow\vec{\sf{B}}=\sf{x\,\hat i+y\,\^j}

For two perpendicular vectors, their dot product should be zero.

\longrightarrow\vec{\sf{A}}\cdot\vec{\sf{B}}=\sf{0}

\longrightarrow\sf{\left(3\,\hat i+4\,\^j\right)\cdot\left(x\,\hat i+y\,\^j\right)=0}

\longrightarrow\sf{3x+4y=0}

\longrightarrow\sf{3x=-4y}

\longrightarrow\sf{\dfrac{x}{y}=-\dfrac{4}{3}}

Or,

\longrightarrow\sf{x:y=4:-3}

Let,

  • \sf{x=4k}

  • \sf{y=-3k}

where \sf{k} is a non - zero real number.

Hence,

\longrightarrow\underline{\underline{\vec{\sf{B}}=\sf{k\left(4\,\hat i-3\,\^j\right)}}}

Magnitude of \vec{\sf{B}} is,

\longrightarrow\left|\vec{\sf{B}}\right|=\sf{\sqrt{4^2+(-3)^2}}

\longrightarrow\left|\vec{\sf{B}}\right|=\sf{5}}

Direction of \vec{\sf{B}} also depends on sign of \sf{k.} That's why unit vector along \vec{\sf{B}} is,

\longrightarrow\sf{\^B}=\sf{\pm\left(\dfrac{4}{5}\,\hat i-\dfrac{3}{5}\,\^j\right)}

Similar questions