Math, asked by shashank3840, 1 year ago

if a vector a of magnitude 50 is collinear with b=6i-8j-7.5k and makes an acute angle with positive z axis then a=?

Attachments:

Answers

Answered by sprao534
3
b
b=+or-50/12.5(6i-8j-7.5k)
Z=pk
b. K is greater than 0
Therefore b=-4(6i-8j-7.5k)
b=-4a

shashank3840: wrong answer
Answered by dk6060805
0

Answer is \overrightarrow{a} = -4\overrightarrow{b}

Step-by-step explanation:

The given vector b= 6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}

the unit vector along b will be

= \pm \frac {6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}}{\sqrt {6^2+8^2+\frac {15^2}{2^2}}}

= \pm \frac {6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}}{\sqrt {36+64+\frac {225}{4}}}

= \pm \frac {6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}}{\sqrt {\frac{36\times 4+64\times 4+225}{4}}}

= \pm \frac {6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}}{\sqrt {\frac{144+256+225}{4}}}

= \pm \frac {6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k}}{\sqrt {\frac{625}{4}}}

= \pm \frac {2}{25}\times (6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k})

Now the vector of magnitude 50 along b

a = \pm 50 \times \frac {2}{25}\times (6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k})

a = \pm 4 \times (6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k})

now as the vector makes acute angle with z−axis,  

we must have a.k > 0 neglecting the positive value as a.k > 0 only for negative value

a = \pm 4 \times (6\overrightarrow{i} - 8\overrightarrow{j} - \frac {15}{2}\overrightarrow{k})

\overrightarrow{a} = -4\overrightarrow{b}

Similar questions