If a vector and b vector are two non-zero vectors such that |a+b|=|a-b|/2 and a=2b then the angle between a vector and b vector is?????
Answers
Answered by
43
Given, a+b = a-b/2
On squaring both sides we get
(a+b)^2 = (a-b)^2/4
a^2 + b^2 + 2ab = a^2 + b^2 - 2ab/4
4a^2 + 4b^2 + 8ab - a^2 - b^2 + 2ab
3a^2 + 3b^2 + 10ab.
Given that a = 2b.
3(2b)^2 + 3b^2 + 10 * (2b) * b cos theta = 0
3 * 4b^2 + 3b^2 + 20b^2 cos theta = 0
12b^2 + 3b^2 + 20b^2 cos theta = 0
15b^2 + 20b^2 cos theta = 0
cos theta = -15/20
theta = cos^-1 (-3/4).
On squaring both sides we get
(a+b)^2 = (a-b)^2/4
a^2 + b^2 + 2ab = a^2 + b^2 - 2ab/4
4a^2 + 4b^2 + 8ab - a^2 - b^2 + 2ab
3a^2 + 3b^2 + 10ab.
Given that a = 2b.
3(2b)^2 + 3b^2 + 10 * (2b) * b cos theta = 0
3 * 4b^2 + 3b^2 + 20b^2 cos theta = 0
12b^2 + 3b^2 + 20b^2 cos theta = 0
15b^2 + 20b^2 cos theta = 0
cos theta = -15/20
theta = cos^-1 (-3/4).
Answered by
0
Answer:
Step-by-step explanation:
Given, a+b = a-b/2
On squaring both sides we get
(a+b)^2 = (a-b)^2/4
a^2 + b^2 + 2ab = a^2 + b^2 - 2ab/4
4a^2 + 4b^2 + 8ab - a^2 - b^2 + 2ab
3a^2 + 3b^2 + 10ab.
Given that a = 2b.
3(2b)^2 + 3b^2 + 10 * (2b) * b cos theta = 0
3 * 4b^2 + 3b^2 + 20b^2 cos theta = 0
12b^2 + 3b^2 + 20b^2 cos theta = 0
15b^2 + 20b^2 cos theta = 0
cos theta = -15/20
theta = cos^-1 (-3/4)
Similar questions