Math, asked by girljust16, 1 year ago

If a vector makes equal angles with i,j and k and has magnitude 3 prove that the angle between a vector and each of i ,j and k is cos inverse 1/√3

Answers

Answered by Charuvi
23
https://photos.app.goo.gl/jZ56wnkcVwyo2gMI3

Charuvi: Fine so images are not supported...You know that the sum of all direction cosines is 1.
Charuvi: And also all the DC's are equal...So you get 3 cos^2alfa=1...From here you can see that your answer is proved.
Answered by SushmitaAhluwalia
16

To prove that the vector with magnitude 3 units make angle cos^{-1}\frac{1}{\sqrt{3} } with coordinate axes.

  • Let the vector be

                   a = a_{1}i+ a_{2} j+a_{3} k

  • Given,

                     |a| = 3

                    \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2} } =3\\a_{1}^{2}+a_{2}^{2}+a_{3}^{2} = 9 ------------(1)

  • The vector makes equal angles with i, j, k.
  • Let the angle be \alpha
  • Now, we know that

                    a.i = |a| |i| cos\alpha

          (a_{1}i+ a_{2}j+a_{3}k).i= 3(1)cos\alpha

                    a_{1}=3cos\alpha    --------(2)

  • Similarly,

                    a_{2}=3cos\alpha----------(3)\\a_{3}=3cos\alpha ----------(4)

  • Substituting (2), (3), (4) in (1) we get

                   9cos^{2}\alpha +9cos^{2}\alpha +9cos^{2} \alpha = 9\\27cos^{2} \alpha =9\\cos^{2} \alpha = \frac{1}{3} \\cos\alpha = \frac{1}{\sqrt{3} } \\\alpha = cos^{-1}(\frac{1}{\sqrt{3} })  

         

       

Similar questions