if A = x^2+y^2 and b = x^2-b ^2 then a+b = ?
Answers
Answered by
0
As we know that
(a+b)
2
=a
2
+b
2
+2ab,(a−b)
2
=a
2
+b
2
−2ab
Given (x
2
+y
2
)(a
2
+b
2
)=(ax+by)
2
x
2
(a
2
+b
2
)+y
2
(a
2
+b
2
)=(ax)
2
+(by)
2
+2(ax)(by)
⟹a
2
x
2
+b
2
x
2
+a
2
y
2
+b
2
y
2
=a
2
x
2
+b
2
y
2
+2abxy
⟹b
2
x
2
+a
2
y
2
=2abxy
⟹(bx)
2
+(ay)
2
−2(bx)(ay)=0
⟹(bx−ay)
2
=0
⟹bx=ay
⟹
a
x
=
b
y
(a+b)
2
=a
2
+b
2
+2ab,(a−b)
2
=a
2
+b
2
−2ab
Given (x
2
+y
2
)(a
2
+b
2
)=(ax+by)
2
x
2
(a
2
+b
2
)+y
2
(a
2
+b
2
)=(ax)
2
+(by)
2
+2(ax)(by)
⟹a
2
x
2
+b
2
x
2
+a
2
y
2
+b
2
y
2
=a
2
x
2
+b
2
y
2
+2abxy
⟹b
2
x
2
+a
2
y
2
=2abxy
⟹(bx)
2
+(ay)
2
−2(bx)(ay)=0
⟹(bx−ay)
2
=0
⟹bx=ay
⟹
a
x
=
b
y
Similar questions