if A=(x,-7),B=(2,5) and AB=13 units find 'x'
Answers
Answered by
14
Answer:
hope you get it
Step-by-step explanation:
here, let x1=x,y1=-7,x2=2,y2=5
we know that
distance (AB)or(d)=√(x2-x1)²+(y2-y1)²
13=√(2-x)²+(5+7)²
13=√4-4x+x²+144
13=√x²-4x+148
squaring on both side
169=x²-4x+148
x²-4x-21=0
x²-7x+3x-21=0
x(x-7)+3(x-7)=0
(x-7)(x+3)=0
Therefore,
x=7 or -3
answer
Answered by
4
Answer:
Step-by-step explanation:
given
A=(x,-7) = (x1,y1)
B= (2,5) = (x2,y2)
Using distance formulae,
AB = The whole root of (x2-x1)the whole square +(y2-y1)the whole square
substituting the values,
13=The whole root of (2-x)the whole square + (5-(-7))the whole square
13=The whole root of (4+x2-4x) + (144)
169= 4 +x2 - 4x +144
169-144-4= x2-4x
21 = X2 - 4X
0= X2-4X -21
0=X2 -7X+3X -21
0= X(X-7) + 3(X-7)
0= (X-7) (X+3)
X-7=0 OR X+3=0
THEREFORE X=7 OR X=-3
Similar questions