Math, asked by mustafa7636, 1 year ago

if A^x = B^y = C^z and A^2 = BC then z equals to​

Answers

Answered by HappiestWriter012
19

Given,

A^x = B^y = C^z  \: and \:  A^2 = BC

From the above,

 \displaystyle \:  \longrightarrow \: A^x = B^y  \\ \longrightarrow \: A^ \frac{x}{y} =  B \\  \\  \\ \longrightarrow \: A ^x = C^z \\ \longrightarrow \: A   ^ \frac{x}{z}  = C\\

Now,

\rightarrow \:  A^2 = BC \\   \rightarrow  A^2 \:  =  {A}^{ \frac{x}{y} }  \times {A}^{ \frac{x}{z} }    \\  \rightarrow \: A^2 \:  =  {A}^{ \frac{x}{y} +  \frac{x}{z}  } \\ \rightarrow  2 = x( \frac{1}{y}  +  \frac{1}{z} ) \\ \rightarrow  \frac{2}{x}  = ( \frac{1}{y}  +  \frac{1}{z} ) \\  \rightarrow \frac{2}{x}   -  ( \frac{1}{y}) =   (  \frac{1}{z} ) \\  \\ \rightarrow  \frac{2y - x}{xy}  =  \frac{1}{z}  \\ \rightarrow \boxed{ z =  \frac{xy}{2y - x} }

Therefore,  \boxed{ z =  \frac{xy}{2y - x} }


mustafa7636: Thanks
HappiestWriter012: :)
ChankyaOfBrainly: Hlw bro..will u plz inbox me I needed to ask something..
mustafa7636: kya puchna h
ChankyaOfBrainly: Not to..u
mustafa7636: ok
ChankyaOfBrainly: I wanna ask @
ChankyaOfBrainly: @happiestwriter
Similar questions