Math, asked by aayushi27, 1 year ago

if a^x =b^y =c^z and b^2 =ac. Prove: y =2x/x+z

Attachments:

Answers

Answered by sushant2505
257
Hi...☺️

Here is your answer...✌️

GIVEN THAT,

b {}^{2} = ac \: \: \: \: \: \: \: \: \: \: \: .....(1)

Also,
 {a}^{x} = {b}^{y} = {c}^{z} \\ \\ let \: \\ {a}^{x} = {b}^{y} = {c}^{z} = p \\ \\ we \: have \\ {a}^{x} = p \\ \\ = > a = {p}^{ \frac{1}{x} } \: \\ \\ similarly \\ b = {p}^{ \frac{1}{y} } \: \: and \: \: c = {p}^{ \frac{1}{z} }

Putting value of a, b and c in eq(1)
We get,

 {( {p}^{ \frac{1}{y} }) }^{2} = {p}^{ \frac{1}{x} } \times {p}^{ \frac{1}{y} } \\ \\ {p}^{ \frac{2}{y} } = {p}^{ (\frac{1}{x} + \frac{1}{y} )}

On equating the power of p
We get,

 \frac{2}{y} = \frac{1}{x} + \frac{1}{z} \\ \\ \frac{2}{y} = \frac{z + x}{xz} \\ \\ \frac{1}{y} = \frac{x + z}{2xz} \\ \\ = > y = \frac{2xz}{x + z} \:\:\:\:\: [Proved] \:
Answered by BEJOICE
45
See the attachment for detail solution
Hope it will help you
Attachments:
Similar questions