Math, asked by greatfanofdhoni, 10 months ago

if a^x=b^y=c^z and b2=ac show that 1/x , 1/y , 1/z are in ap

plz answer it

only if you know the answer.​

Answers

Answered by Abhishek073
6

Answer:

Step-by-step explanation:

Given ax = by = cz and b2 = ac

Let ax = by = cz = k

Consider,  ax = k  ⇒ a = k1/x

Similarly, we get b = k1/y and c = k1/z

Now consider, b2 = ac

⇒ (k1/y)2 = (k1/x)(k1/z)

⇒ k2/y =  k1/x + 1/z

Comparing both the sides, we get

(2/y) = (1/x) + (1/z)

⇒ (2/y) = (x + z)/xz

∴ y = (2xz)/(x + z)

Answered by Anonymous
2

Answer:

Step-by-step explanation:

Given ax = by = cz and b2 = ac

Let ax = by = cz = k

Consider,  ax = k  ⇒ a = k1/x

Similarly, we get b = k1/y and c = k1/z

Now consider, b2 = ac

⇒ (k1/y)2 = (k1/x)(k1/z)

⇒ k2/y =  k1/x + 1/z

Comparing both the sides, we get

(2/y) = (1/x) + (1/z)

⇒ (2/y) = (x + z)/xz

∴ y = (2xz)/(x + z)

Follow us

Similar questions