Math, asked by sainivedh26, 3 months ago

if a^x = b^y = c^z and x, y, z are im G. P then,

please answer me quickly!!​

Answers

Answered by mathdude500
6

Question

 \sf \: If \:  {a}^{x} =  {b}^{y} =  {c}^{z} \: and \:x, \: y ,  \: z \: are \: in \: GP \: then

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \sf \:  \:  {a}^{x} =  {b}^{y} =  {c}^{z} \:

Let assume that

\rm :\longmapsto\: \sf \:  \:  {a}^{x} =  {b}^{y} =  {c}^{z} \:  = k

 \red{\bf :\longmapsto\: {a}^{x} = k\rm  \:  \:  \: \implies\:x =  log_{a}(k)  -  -  - (1)}

 \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {a}^{b}  = c \:  \: then \:  \: b =  log_{a}(c) \bigg \}}

 \green{\bf :\longmapsto\: {b}^{y} = k\rm  \:  \:  \: \implies \: y =  log_{b}(k)  -  -  - (2)}

 \blue{\bf :\longmapsto\: {c}^{z} = k\rm  \:  \:  \: \implies\:z =  log_{c}(k)  -  -  - (3)}

Again,

It is given that

\bf :\longmapsto\:x, \: y, \: z \: are \: in \: GP

\rm :\longmapsto\:\dfrac{y}{x}  = \dfrac{z}{y}

\rm :\longmapsto\: {y}^{2} = xz

On substituting the values of x, y, z from (1), (2) and (3),

\rm :\longmapsto\: {( log_{b}(k)) }^{2}  =  log_{a}(k)  \times  log_{c}(k)

\rm :\longmapsto\: {\bigg(\dfrac{logk}{logb} \bigg) }^{2}  = \dfrac{logk}{loga}  \times \dfrac{logk}{logc}

\rm :\longmapsto\: {\bigg(\dfrac{1}{logb} \bigg) }^{2}  = \dfrac{1}{loga}  \times \dfrac{1}{logc}

\bf\implies \: {(logb)}^{2} = loga \:  \times  \: logc

\bf\implies \:loga, \: logb, \: logc \: are \: in \: GP

Similar questions