If a^x=c^q=b and c^y=a^z=d, then
1) xy=qz
2) x/y=q/z
3) x+y=q+z
4) x-y=q-z
Please explain..
Answers
Answered by
0
If a^x=c^q=b and c^y=a^z=d,
a^x = b
taking log on both side
x log a = log b
x = log b / log a
similarly, y = log d / log c
q = log b / log c & z = log d / log a
1) x y = ( log b x log d ) / (log a x log c) ---> LHS
2) similarly x / y = q /z
3) x + y = log b / log a + log d / log c
= (log b x log c + log d x log a) / log a x log c (taking LCM)
q+z = log b / log a + log d / log c
= (log b x log c + log d x log a) / log a x log c (taking LCM)
so x+y = q+z
4) similarly x - y = q - z
a^x = b
taking log on both side
x log a = log b
x = log b / log a
similarly, y = log d / log c
q = log b / log c & z = log d / log a
1) x y = ( log b x log d ) / (log a x log c) ---> LHS
q z = (log b x log d) / ( log a x log c) ----> RHS
so, xy = qz2) similarly x / y = q /z
3) x + y = log b / log a + log d / log c
= (log b x log c + log d x log a) / log a x log c (taking LCM)
q+z = log b / log a + log d / log c
= (log b x log c + log d x log a) / log a x log c (taking LCM)
so x+y = q+z
4) similarly x - y = q - z
Similar questions