Math, asked by bangtanboys95, 18 days ago

If a = x cos  \theta + y sin  \theta and b = x sin  \theta - y cos  \theta , then obtain a relation in x and y by eliminating '  \theta '.

Please don't Spam!​

Answers

Answered by vijay876751ac2
4

Given :

If a = x cos  \theta + y sin  \theta and b = x sin  \theta - y cos  \theta , then obtain a relation in x and y by eliminating '  \theta '.

Solution :

\normalsize\sf\ Given  \: that  \: a  \: = \:  x  \: cos \:  \theta \:  + \:  y \:  sin  \:  \theta

\large\sf\ squaring  \: on  \: both  \: sides, \:  we \:  get

\large\sf\ {a}^{2} \:  =  \:  {( \: x \: cos  \: \theta \:  +  \: y \: sin \: \theta \: )}^{2}

\large\sf\ \:  \:  \:  \:   \:  \:  =  \:  {x}^{2} \:   {cos}^{2} \: \theta \:  +  \:  {y}^{2} \:  {sin}^{2} \: \theta \:  +  \: 2.x \: cos \: \theta. \: y \: sin \: \theta \:  \big( \because \: ( \: a \:  +  \: b \: ) {}^{2} \:  =  \:  {a}^{2} \:  +  \:  {b}^{2} \:  +  \: 2ab \:  \big)

\large\sf\ {a}^{2} \:  =  \:   {x}^{2} \:  {cos}^{2} \: \theta \:  +  \:  {y}^{2} \:  {sin}^{2} \: \theta \:  +  \: 2xy \:  \: sin \: \theta \:  \: cos \: \theta \:  \rule{30mm}{1pt} \:  \: {\boxed{\large{\sf{\red{1}}}}}

\large\sf\ b \:   \:  \: =  \: x \: sin \: \theta \:  -  \: y \: cos \: \theta

\large\sf\ squaring \:  on  \: both  \: sides,  \: we \:  get

\large\sf\  {b}^{2} \:   \: =  \: ( \: x \: sin \: \theta \:  -  \: y \: cos \: \theta \: ) {}^{2}

\large\sf\ \:  \:  \:  \:  \:  \:  \:  \: =  \:  {x}^{2} \:  {sin}^{2} \: \theta \:  +  \:  {y}^{2} \:  {cos}^{2} \: \theta \:  -  \: 2.x \: sin \: \theta. \:  y \: cos \: \theta \: \big( \because \: ( \: a \:   -   \: b \: ) {}^{2} \:  =  \:  {a}^{2} \:  +  \:  {b}^{2} \:   -   \: 2ab \:  \big)

\large\sf\  {b}^{2} \:  \:  \: =  \:  {x}^{2} \:  {sin}^{2} \: \theta \:  +  \:  {y}^{2} \:  {cos}^{2} \: \theta \:  -  \: 2xy \: sin \: \theta \: cos \: \theta \: \rule{30mm}{1pt} \:  \: {\boxed{\large{\sf{\red{2}}}}}

Now, Let's add Eq 1 + 2

\large\sf\  {a}^{2} \:  \:  \: \: = \: {x}^{2} \:  {cos}^{2} \: \theta \:  +  \:  {y}^{2} \:  {sin}^{2} \: \theta \:  +  \: 2xy \: sin \: \theta \: cos \: \theta

\large\sf\  {b}^{2} \:  \:  \:  \:  =  \:  {x}^{2} \:  {sin}^{2} \: \theta \:  +  \:  {y}^{2} \: {cos}^{2} \: \theta \:  -  \: 2xy \: sin \: \theta \: cos \: \theta

\large\sf\  {a}^{2} \:  +  \:  {b}^{2} \:  =  \:  {x}^{2} \: ( \:  {cos}^{2} \: \theta \:  +  \:  {sin}^{2} \: \theta \: ) \:  +  \:  {y}^{2} \: ( \:  {sin}^{2} \: \theta \:  + \:  {cos}^{2} \: \theta \: )

\large\sf\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \:  {x}^{2} \: (1) \:  +  \:  {y}^{2} \: (1) \:  =  \:  {x}^{2} \:  +  \:  {y}^{2}

\tiny\

{\large{\boxed{\sf{\red{ {a}^{2} \:  +  \:  {b}^{2} \:  =  \:  {x}^{2} \:  +  \:  {y}^{2}}}}}}

 \rule{150mm}{1pt}

Know More :

Trigomentry Identidites :

\large\sf\  {sin}^{2} \: \theta \:  +  \:  {cos}^{2} \: \theta \:  =  \: 1

\large\sf\  {sec}^{2} \: \theta \:  -  \:  {tan}^{2} \: \theta \:  =  \: 1

\large\sf\  {cosec}^{2} \: \theta \:  -  \:  {cot}^{2} \: \theta \:  =  \: 1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & N.D \\ \\ \rm cosec A & N.D & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & N.D \\ \\ \rm cot A & N.D & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions