Math, asked by thilak2609, 9 months ago

if a=x^m+n.y^l;b=x^n+1.y^m and c=x^l+m.y^n Prove that : a^m-n.b^n-l.c^l-m=1​

Answers

Answered by BrainlyTornado
12

GIVEN:

a= x^{m+n}y^l

b= x^{n + l}y^m

c= x^{l + m}y^n

TO PROVE:

a^{m-n}\times b^{n-l}\times c^{l-m}=1

EXPLANATION:

a^{m-n}=\dfrac{a^m}{a^n}

a^{m  - n}= \dfrac{\left(x^{m+n} \times y^l\right)^m}{\left(x^{m+n} \times y^l\right)^n}

a^{m - n}=  \dfrac{x^{m(m+n)} \times y^{lm}}{x^{n(m+n)} \times y^{ln}}

a^{m - n}=  x^{m(m+n) - n(m + n)} \times y^{lm - ln}

a^{m - n}=  x^{(m+n) (m- n)} \times y^{lm - ln}

a^{m - n}=  x^{ {m}^{2}  - {n}^{2} }  \times y^{lm - ln}

b^{n - l}=\dfrac{b^n}{b^l}

b^{n - l}= \dfrac{\left(x^{n + l} \times y^m\right)^n}{\left(x^{n + l} \times y^m\right)^l}

b^{n - l}= \dfrac{x^{n(n + l)} \times y^{mn}}{x^{l(n + l)} \times y^{ml}}

b^{n - l}=x^{n(n + l) - l(n + l)} \times y^{mn - ml}

b^{n - l}=x^{(n + l) (n- l)} \times y^{mn - ml}

b^{n - l}=x^{ {n}^{2} -  {l}^{2}  } \times y^{mn - ml}

c^{l-m} =  \dfrac{ {c}^{l} }{ {c}^{m} }

c^{l-m} =  \dfrac{( x^{l + m} \times y^n)^{l} }{ (x^{l + m} \times y^n) ^{m}  }

c^{l-m} =  \dfrac{ x^{l(l + m)} \times y^{nl }}{ x^{m(l + m)} \times y^{mn} }

c^{l-m} = x^{l(l + m) - m(l + m)} \times y^{nl  - mn}

c^{l-m} = x^{(l + m)(l - m)} \times y^{nl  - mn}

c^{l-m} = x^{ {l}^{2} -  {m}^{2}  } \times y^{nl  - mn}

a^{m-n}\times b^{n-l}\times c^{l-m}=x^{0}   \times  y^{0}  = 1

Since on multiplying the terms x is common in all the three terms and so we can add the powers.

x^{{m}^{2}  -  {n}^{2}  +  {n}^{2}  -  {l}^{2} +  {l}^{2}  -   {m}^{2}  }  =  {x}^{0}  = 1

Again on multiplying the terms y is common in all the three terms and so we can add the powers.

y^{lm - ln + mn - ml +nl  - mn } =  {y}^{0}  = 1

HENCE PROVED.

Answered by Anonymous
6

 \rm \huge { \underline{ \underline{ \pink{answer}}}}

 \bf \huge {given}

 \bf { \huge\star \: a =  {x}^{m + n} {y}^{l}  }

 \bf{ \huge \star \: b =  {x}^{n + l}  {y}^{m} }

 \bf { \huge \star \: c =  {x}^{l + m}  {y}^{n} }

 \bf { \underline{ \underline{ \green{putting \: the \: values \: of \: a \: b \: and \: c \: in \:  {a}^{m - n}  {b}^{n - l}  {c}^{l - m}  \: we \: get}}}}

  \implies\bf \red{ {a}^{m - n}  {b}^{n - l}  {c}^{l - m} }

 \implies \bf \red{ {(x}^{m + n}  {y}^{l} ) ^{m - n}  {(x}^{n + l}  {y}^{m} ) ^{n - l}  {(x}^{l + m}  {y}^{n} ) ^{l - m} }

 \implies \bf \red{[  {x}^{(m + n)(m - n)}  {y}(l(m - n))][  {x}^{(n + l)(n - l)  }  {y}^{m(n - l)} ][ {x}^{(l + m)(lm)}  {y}^{n(l - m)}  ]}

  \implies\bf \red{ {x}^{( {m}^{2}  -  {n}^{2} ) }{x}^{( {n}^{2} -  {l}^{2})   } {x}^{( {l}^{2} -  {m}^{2} ) }   {y}^{lm - ln}  {y}^{mn - ml}  {y}^{nl - nm} }

 \implies \bf \red{ {x}^{0}  {y}^{0} }

 \implies \bf \red{1}

 \rm \huge { \underline { \underline{ \blue{hence \: proved}}}}

Similar questions