Math, asked by harjeetkaur601, 26 days ago

If a = x seco + y tane , b = x tan +ysec e then x2-y2 =​

Answers

Answered by mathdude500
2

Appropriate Question

\rm :\longmapsto\:a = xsec\theta  + ytan\theta

\rm :\longmapsto\:b = xtan\theta  + ysec\theta

 \red{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

\rm :\longmapsto\:a = xsec\theta  + ytan\theta  -  -  -  - (1)

and

\rm :\longmapsto\:b = xtan\theta  + ysec\theta  -  -  -  - (2)

On squaring (1) and (2), we get

\rm :\longmapsto\: {a}^{2} =  {(xsec\theta  + ytan\theta )}^{2}

\rm :\longmapsto\: {a}^{2} =  {x}^{2} {sec}^{2}\theta  +  {y}^{2} {tan}^{2} \theta + 2xysec\theta tan\theta  -  -  -  - (3)

Also,

\rm :\longmapsto\: {b}^{2} =  {(xtan\theta  + ysec\theta )}^{2}

\rm :\longmapsto\: {b}^{2} =  {x}^{2} {tan}^{2}\theta  +  {y}^{2} {sec}^{2} \theta + 2xysec\theta tan\theta  -  -  -  - (4)

On Subtracting equation (4) from (3), we get

\rm :\longmapsto\: {a}^{2} -  {b}^{2} =  {x}^{2}( {sec}^{2}\theta  -  {tan}^{2}\theta ) -  {y}^{2}({sec}^{2}\theta  -  {tan}^{2}\theta ))

\rm :\longmapsto\: {a}^{2} -  {b}^{2} =  {x}^{2} -  {y}^{2}

\bf\implies \: {x}^{2}  -  {y}^{2}  =  {a}^{2}  -  {b}^{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by EmperorSoul
10

Appropriate Question

\rm :\longmapsto\:a = xsec\theta  + ytan\theta

\rm :\longmapsto\:b = xtan\theta  + ysec\theta

 \red{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

\rm :\longmapsto\:a = xsec\theta  + ytan\theta  -  -  -  - (1)

and

\rm :\longmapsto\:b = xtan\theta  + ysec\theta  -  -  -  - (2)

On squaring (1) and (2), we get

\rm :\longmapsto\: {a}^{2} =  {(xsec\theta  + ytan\theta )}^{2}

\rm :\longmapsto\: {a}^{2} =  {x}^{2} {sec}^{2}\theta  +  {y}^{2} {tan}^{2} \theta + 2xysec\theta tan\theta  -  -  -  - (3)

Also,

\rm :\longmapsto\: {b}^{2} =  {(xtan\theta  + ysec\theta )}^{2}

\rm :\longmapsto\: {b}^{2} =  {x}^{2} {tan}^{2}\theta  +  {y}^{2} {sec}^{2} \theta + 2xysec\theta tan\theta  -  -  -  - (4)

On Subtracting equation (4) from (3), we get

\rm :\longmapsto\: {a}^{2} -  {b}^{2} =  {x}^{2}( {sec}^{2}\theta  -  {tan}^{2}\theta ) -  {y}^{2}({sec}^{2}\theta  -  {tan}^{2}\theta ))

\rm :\longmapsto\: {a}^{2} -  {b}^{2} =  {x}^{2} -  {y}^{2}

\bf\implies \: {x}^{2}  -  {y}^{2}  =  {a}^{2}  -  {b}^{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions