If A={x:x belongs to N and x<20} and B={x:x belongs to N and x less than or equal to 5} then write the set A-B in the set builder form.
Answers
Answer:
{ x : x € N , 5 < x < 20 }
OR
{ x : x € N , 6 ≤ x < 20 }
OR
{ x : x € N , 5 < x ≤ 19 }
OR
{ x : x € N , 6 ≤ x ≤ 19 }
Solution:
We have ;
A = { x : x € N and x < 20 }
B = { x : x € N and x ≤ 5 }
Clearly,
The given sets A and B are in set builder form.
Thus,
The given sets A and B in roster form will be ;
A = { 1 , 2 , 3 , ... , 19 }
B = { 1 , 2 , 3 , 4 , 5 }
Now,
( A - B ) in roster form will be ;
=> A - B = {1 , 2 , 3 , ... , 19} - {1 , 2 , 3 , 4 , 5}
=> A - B = { 6 , 7 , 8 , ... , 19 }
Thus,
The set (A - B) in set builder form will be ;
{ x : x € N , 5 < x < 20 }
OR
{ x : x € N , 6 ≤ x < 20 }
OR
{ x : x € N , 5 < x ≤ 19 }
OR
{ x : x € N , 6 ≤ x ≤ 19 }
Answer:
Answer:
{ x : x € N , 5 < x < 20 }
OR
{ x : x € N , 6 ≤ x < 20 }
OR
{ x : x € N , 5 < x ≤ 19 }
OR
{ x : x € N , 6 ≤ x ≤ 19 }
Solution:
We have ;
A = { x : x € N and x < 20 }
B = { x : x € N and x ≤ 5 }
Clearly,
The given sets A and B are in set builder form.
Thus,
The given sets A and B in roster form will be ;
A = { 1 , 2 , 3 , ... , 19 }
B = { 1 , 2 , 3 , 4 , 5 }
Now,
( A - B ) in roster form will be ;
=> A - B = {1 , 2 , 3 , ... , 19} - {1 , 2 , 3 , 4 , 5}
=> A - B = { 6 , 7 , 8 , ... , 19 }
Thus,
The set (A - B) in set builder form will be ;
{ x : x € N , 5 < x < 20 }
OR
{ x : x € N , 6 ≤ x < 20 }
OR
{ x : x € N , 5 < x ≤ 19 }
OR
{ x : x € N , 6 ≤ x ≤ 19 }
mark me as the brainiest
Step-by-step explanation: