If A= {x:x €n, x<7}, B={x:x is prime , x<8}and C={ x:x€N is an odd no. and x< 10}. verify that A intersection ( B union B)=(A intersection B) union(A intersection C)
Answers
Answered by
2
- A = { 1 , 2 , 3 , 4 , 5 , 6 }
- B = { 2 , 3 , 5 , 7 }
- C = { 1 , 3 , 5 , 7 , 9}
- A (B C ) = (A B ) ( A C )
LHS
- A (B C )
- {1 ,2 , 3 , 4 , 5 , 6 } ( { 2 , 3 , 5 , 7 } { 1 , 3 , 5 , 7 , 9 } )
- { 1 , 2 , 3 , 5 }
RHS
- (A B ) ( A C )
- ( { 2 , 3 , 5 }) ( { 1 , 3 , 5 } )
- { 1 , 2 , 3 , 5 }
LHS = RHS
ie ,
A (B C ) = (A B ) ( A C )
Answered by
0
Answer:
Answer:−
A = { 1 , 2 , 3 , 4 , 5 , 6 }
B = { 2 , 3 , 5 , 7 }
C = { 1 , 3 , 5 , 7 , 9}
\rule{10cm}{0.0005cm}
A \cap∩ (B \cup∪ C ) = (A \cap∩ B ) \cup∪ ( A \cap∩ C )
LHS
A \cap∩ (B \cup∪ C )
\red{\implies}⟹ {1 ,2 , 3 , 4 , 5 , 6 } \cap∩ ( { 2 , 3 , 5 , 7 } \cup∪ { 1 , 3 , 5 , 7 , 9 } )
\red{\implies}⟹ { 1 , 2 , 3 , 5 }
RHS
(A \cap∩ B ) \cup∪ ( A \cap∩ C )
\red{\implies}⟹ ( { 2 , 3 , 5 }) \cup∪ ( { 1 , 3 , 5 } )
\red{\implies}⟹ { 1 , 2 , 3 , 5 }
\rule{10cm}{0.05cm}
LHS = RHS
ie ,
A \cap∩ (B \cup∪ C ) = (A \cap∩ B ) \cup∪ ( A \cap∩ C )
Step-by-step explanation:
I hope you understood
Similar questions