Math, asked by updeshsh83, 1 month ago

If A= {x:x €n, x<7}, B={x:x is prime , x<8}and C={ x:x€N is an odd no. and x< 10}. verify that A intersection ( B union B)=(A intersection B) union(A intersection C)​

Answers

Answered by Athul4152
2

 \bf\huge\underline{\underline{ Answer :- }}

  • A = { 1 , 2 , 3 , 4 , 5 , 6 }

  • B = { 2 , 3 , 5 , 7 }

  • C = { 1 , 3 , 5 , 7 , 9}

 \rule{10cm}{0.0005cm}

  • A  \cap (B  \cup C ) = (A  \cap B )  \cup ( A  \cap C )

LHS

  • A  \cap (B  \cup C )

  •   \red{\implies} {1 ,2 , 3 , 4 , 5 , 6 }  \cap ( { 2 , 3 , 5 , 7 }  \cup { 1 , 3 , 5 , 7 , 9 } )

  •   \red{\implies} { 1 , 2 , 3 , 5 }

RHS

  • (A  \cap B )  \cup ( A  \cap C )

  •   \red{\implies} ( { 2 , 3 , 5 })  \cup ( { 1 , 3 , 5 } )

  •   \red{\implies} { 1 , 2 , 3 , 5 }

 \rule{10cm}{0.05cm}

LHS = RHS

ie ,

A  \cap (B  \cup C ) = (A  \cap B )  \cup ( A  \cap C )

Answered by darshikakriplani9
0

Answer:

Answer:−

A = { 1 , 2 , 3 , 4 , 5 , 6 }

B = { 2 , 3 , 5 , 7 }

C = { 1 , 3 , 5 , 7 , 9}

\rule{10cm}{0.0005cm}

A \cap∩ (B \cup∪ C ) = (A \cap∩ B ) \cup∪ ( A \cap∩ C )

LHS

A \cap∩ (B \cup∪ C )

\red{\implies}⟹ {1 ,2 , 3 , 4 , 5 , 6 } \cap∩ ( { 2 , 3 , 5 , 7 } \cup∪ { 1 , 3 , 5 , 7 , 9 } )

\red{\implies}⟹ { 1 , 2 , 3 , 5 }

RHS

(A \cap∩ B ) \cup∪ ( A \cap∩ C )

\red{\implies}⟹ ( { 2 , 3 , 5 }) \cup∪ ( { 1 , 3 , 5 } )

\red{\implies}⟹ { 1 , 2 , 3 , 5 }

\rule{10cm}{0.05cm}

LHS = RHS

ie ,

A \cap∩ (B \cup∪ C ) = (A \cap∩ B ) \cup∪ ( A \cap∩ C )

Step-by-step explanation:

I hope you understood

Similar questions