Math, asked by satvikking24, 8 months ago

if a = (x+y)^3 - (x-y)^3 and b = 3x^2+y^2 then what is A/B

Answers

Answered by amankumaraman11
2

Here,

\begin{tabular}{ |c| } </p><p> \hline a= (x+y)^3 - (x-y)^3</p><p> \\ b = 3x^2+y^2  \\  </p><p> \hline</p><p>\end{tabular}

To find : a/b

So, Simplifying the value of a,

 \to \tt{}a = (x+y)^3 - (x-y)^3 \\

  • a³ - b³ = (a-b)(a²+b²+ab)

\small \boxed{ \rm{applying \:  \: above \:  \: identity}} \\  \small \to \bf{} \{ (x + y)  - (x - y)\} \{  {(x + y)}^{2}  +  {(x - y)}^{2}  + (x + y)(x - y)\} \\  \small \to \bf{} \{ \cancel{x }+ y - \cancel{x} + y\} \{  {x}^{2}  +  \cancel{{y}^{2}} + \cancel{2xy }+  {x}^{2}   +  {y}^{2} -\cancel{ 2xy} +  {x}^{2}   -  \cancel{{y}^{2} }\}\\    \small \boxed{ \rm{}cancelling \:  \: like \:  \: terms}\\  \small \to \bf{} \orange{2y \{ {3x}^{2}   +  {y}^{2} \}  }

Now,

 \huge \tt  \implies \: \frac{a}{b}   \:  \\  \\ \large  \rm \to \:   \frac{2y( \cancel{{3x}^{2}  +  {y}^{2}})}{  \cancel{{3x}^{2}  +  {y}^{2} }}  \\  \\  \huge \rm \to \: \red{ 2y}

Thus,

  • a/b = 2y
Similar questions