If a xor b = c then show that a xor c = b and b xor c = a using boolean algebra
Answers
Answered by
23
Answer:
Simple proof!!
Step-by-step explanation:
a xor b = c
take xor with 'a' both side
a xor(a xor b) = a xor c
Now, we know a xor a = 0,
0 xor b = a xor c
or, we can say: -
b = a xor c
Answered by
4
Given:
a xor b = c
To Proof:
a xor c = b and
b xor c = a
Solution:
we have,
a xor b = c
taking xor with 'a' both side
⇒ a xor(a xor b) = a xor c
⇒ (a xor a)* xor b) = a xor c
⇒ 0 xor b = a xor c (as, a xor a = 0)
⇒ a xor c = b
Again,
a xor b = c
taking xor with 'b' both side
⇒ b xor(a xor b) = b xor c
⇒ (b xor a)* xor b) = b xor c
⇒ 0 xor a = a xor c (as, b xor b = 0)
⇒ a xor c = a
So, a xor c = b and b xor c = a Proved.
Similar questions