If a,ß, y be zeros of (x³+ x+17) then polynomial whose zeros are alpha – 2, beta– 2, gama- 2 is looks like K((x +A)³ +(x +B) + C) then (A+ B+C) IS
Answers
Answered by
6
Step-by-step explanation:
Solution :
a)α+β+γ=0
αβ+βγ+γα=q
αβγ=−r
2(α+β+γ)=0=b
x3−bx2+cx−d=0
C=αβ+αγ+β2+βγ+βα+γ2+γα+αβ+α2+αβ
c=(α+β+γ)2+(αβ+γβ+αγ)
c=q
d=(α+β)(β+γ)(γ+α)
d=αβ+αγ+β2+βγ)(α+γ)
d=αβγ+αγ2+β2γ+βγ2+α2β+α2γ+β2γ+αβγ
d=r
x3+2x+r=0
b)b=αβ+βγ+γα=q
c=αβ2γ+βγa2α+α2βγ
=αβγ(α+β+γ)=0
d=α2β2γ2=r2
x3−qx2+0x−r2=0
x3−qx2−r2=0.
Similar questions