if a(y+z)=b(z+x)=c(x+y) and a≠b≠c then show that y–z/a(b-c) = z-x/b(c-a) = x-y/c(a-b)
Answers
Answered by
1
Sum of the digits of a two-digit number is 12. The given number exceeds the number obtained by interchanging the digits by 36. Find the given
number.
The tens digit of the required number be x
and the units digit be y
x + y = 12 ......... eq. (1)
Required number = (10x + y)
Number obtained on reversing the digits = (10y + x)
(10y + x) - (10x + y) = 18
9y - 9x = 18
x - y = 12 ......... eq. (2)<br>
On adding eq. (1) and eq. (2)
x + y + y - x = 12 +2
2y = 14
y = 2
x = 5
Hence, the required number is 57
Similar questions