Math, asked by anitatiwary1979, 9 months ago

if a=y+z b=z+x c=x+y prove that a^3+b^3+ c^3-3abc=2(x^3+y^3+z^3-3xyz)​

Answers

Answered by Carapace
3

Answer:

Given :

  • a = y + z
  • b = z + x
  • c = x + y

To Prove : a³ + b³ + c³ - 3abc = 2(x³ + y³ + z³ - 3xyz)

Solution :

L.H.S. = a³ + b³ + c³ - 3abc

→ (y + z)³ + (z + x)³ + (x + y)³ - 3(y + z)(z + x)(x + y)

• Identity : (m + n)³ = m³ + n³ + 3m²n + 3mn²

→ (y)³ + (z)³ + 3(y)²(z) + 3(y)(z)² + (z)³ + (x)³ + 3(z)²(x) + 3(z)(x)² + (x)³ + (y)³ + 3(x)²(y) + 3(x)(y)² - 3[y(z + x) + z(z + x)](x + y)

→ y³ + z³ + 3y²z + 3yz² + z³ + x³ + 3xz² + 3x²z + x³ + y³ + 3x²y + 3xy² - 3[yz + xy + z² + zx](x + y)

→ y³ + z³ + 3y²z + 3yz² + z³ + x³ + 3xz² + 3x²z + x³ + y³ + 3x²y + 3xy² - 3[x(yz + xy + z² + zx) + y(yz + xy + z² + zx)]

→ y³ + z³ + 3y²z + 3yz² + z³ + x³ + 3xz² + 3x²z + x³ + y³ + 3x²y + 3xy² - 3[xyz + x²y + xz² + x²z + y²z + xy² + yz² + xyz]

→ y³ + z³ + 3y²z + 3yz² + z³ + x³ + 3xz² + 3x²z + x³ + y³ + 3x²y + 3xy² - 3xyz - 3x²y - 3xz² - 3x²z - 3y²z - 3xy² - 3yz² - 3xyz

  • Rearranging all the terms.

→ x³ + x³ + y³ + y³ + z³ + z³ + 3x²y - 3x²y + 3xy² - 3xy² + 3y²z - 3y²z + 3yz² - 3yz² + 3x²z - 3x²z + 3xz² - 3xz² - 3xyz - 3xyz

→ x³ + x³ + y³ + y³ + z³ + z³ - 3xyz - 3xyz

→ 2x³ + 2y³ + 2z³ - 6xyz

  • Taking out 2 as a common factor.

→ 2(x³ + y³ + z³ - 3xyz)

= R.H.S.

Hence, proved !!

Similar questions