Math, asked by presetmine, 7 hours ago

if - a(y+z)=x b(z+x)=y c(x+y)=z then prove that a^1+a+b^1+b+c^1+c = 1

Attachments:

Answers

Answered by helper016455
1

Answer:

From question we get,

⇒ a=

y+z

x

⇒ b=

z+x

y

⇒ c=

x+y

z

Now,

ab=

(y+z)(z+x)

xy

bc=

(z+x)(x+y)

yz

ca=

(y+z)(x+y)

xz

abc=

(y+z)(x+y)(x+z)

xyz

L.H.S.=bc+ca+ab+2abc

=ab+bc+ca+2abc

=

(y+z)(z+x)

xy

+

(z+x)(x+y)

yz

+

(y+z)(x+y)

xz

+

(y+z)(x+y)(x+z)

xyz

=

(y+z)(x+y)(x+z)

xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=

(y+z)(x+y)(x+z)

x

2

y+xy

2

+y

2

z+z

2

y+x

2

z+z

2

x+2xyz

=

(y+z)(x+y)(x+z)

y(x

2

+2xz+z

2

)+y

2

(x+z)+zx(x+z)

=

(y+z)(x+y)(x+z)

y(x+z)

2

+y

2

(x+z)+zx(x+z)

=

(y+z)(x+y)(x+z)

(x+z)[y(x+z)+y

2

+zx]

=

(y+z)(x+y)(x+z)

(x+z)(yx+yz+y

2

+zx)

=

(x+z)(x+y)(x+z)

(x+z)[y(x+y)+z(x+y)]

=

(y+z)(x+y)(x+z)

(x+z)(x+y)(y+z)

=1

=R.H.S.

Similar questions