If a(y+z-x)= b(z+x-y)= c(x+y-z), then show that x(b+c)= y(c+a)= z(a+b)
Answers
Step-by-step explanation:
given, a(y+z-x) = b(z+x-y) = c(x+y-z) = k (assume)
=> a(y+z-x) = k => a = k/(y+z-x)
=> b(z+x-y) = k => b = k/(z+x-y)
=> c(x+y-z) = k => c = k/(x+y-z)
consider (a+b)
=> a+b = k/(y+z-x) + k/(z+x-y)
=> a+b = k [ + ]
=> a+b = k [ ]
=> a+b = k [ ]
=> a+b = k [ ]
=> a+b = k [ ] = k [ ]
=> (a+b) [ ] = k ---------------- (1)
consider (b+c)
=> b+c = k/(z+x-y) + k/(x+y-z)
=> b+c = k [ + ]
=> b+c = k [ ]
=> b+c = k [ ]
=> b+c = k [ ] = k [ ]
=> (b+c) [ ] = k ---------------- (2)
consider (a+c)
=> a+c = k/(y+z-x) + k/(x+y-z)
=> a+c = k [ + ]
=> a+c = k [ ]
=> a+c = k [ ]
=> a+c = k [ ] = k [ ]
=> (a+c) [ ] = k ----------------------(3)
by (1) and (2) =>
(a+b) [ ] = (b+c) [ ]
=> = *
=> = * =
=> =
=> z(a+b) = x(b+c)
similarly, we can prove,
z(a+b) = y(a+c)
=> x(b+c) = y(a+c) = z(a+b)