if a1+a2+a3+a4+a5=34 and a3.a5-53 what is a20?
Answers
a1 + a5 + a10 +a15 + a20 + a24 = 225 (given)
(a1+a24) + (a5+a20) + (a10+a15) = 225 ....................1
let first term is a & common difference is d then
a1 = a , a24 = a+23d , a1+a24 = 2a+23d ...................2
a5 = a+4d , a20 = a+19d , a5+a20 = 2a+23d ...................3
a10 = a+9d , a15 = a+14d , a10+a15 = 2a+23d .....................4
putting 2 , 3 , 4 in eq 1 we get
3(2a+23d) = 225
2a+23d = 75 ....................5
now , a1 + a2 + a3 ............a24 = S24
S24 = 24/2[2a+(24-10d) =12(2a+23d) .....................6
from 5 & 6
S24 = 12*75 = 900