Math, asked by gaytri1509, 7 months ago

If a1, a2, a3, .......an (n >= 2) are real and (n-1)a1² - 2na2<0 then prove that at least two
roots of the equation x^n + a2x^(n-2) + an = 0 are imaginary.

Please tell urgent .

Answers

Answered by Srichandralolla
0

Step-by-step explanation:

let                                                                                                                                          

                     f(x) = x^k + a_1x^(^k^-^1^) + a_2x^(^k^-^2^) + ... + a_k = 0

now,

if this function has at least two imaginary roots, Then the derivative of this function when the highest degree becomes two should have 2 non-real roots.

so,the (K-2) th derivative is given by:                                                                                          

                                                                                                                                                                                                                      f^(^k^-^2^)(x) = (k!)x^2 + ((k-1)!) a_1x + ((k-2)!)a2 =0\\

using the rule                       \frac{d}{dx} (x^n) = nx^n^-^1

now, after taking ((k-2)!) common and cancelling on both sides, we are left with:                          

                f^(^k^-^2^)(x) =k(k-1)x^2+a_1(k-1)x+a_2=0 ,

which is a quadratic equation in x. NOW, for this equation, we get the discriminant, D as:            

                              D=b^2-4ac

                                  = a_1^2 (k-1)^2 - 4(k)(k-1)a_2

                                  = (k-1)((k-1)a_1^2 -4ka_2)

now, we know that since k>2 , k-1 > 0 and it was initially given that

                                   (k-1)a_1^2 -4ka_2 &lt; 0

SO, we get D<0 , which means  f^(^k^-^2^) (x) has 2 imaginary roots, which in turn means that f(x) has at least 2 imaginary roots

Similar questions