Math, asked by jayaramnayak, 1 year ago

if a1,a2,a3,........ are in a harmonic progession with a1 = 5 and a20 = 25. then least positive integer n for which a nth <0 is

Answers

Answered by sivaprasath
28
Solution :

______________________________________________________________

Given :

a_1,a_2,a_3.... in H.P

With  a_1 = 5,

&

a_{20} = 25,.

_____________________________________________________________

To find :

The least positive integer n for which a_n   < 0

_____________________________________________________________

We know that,.

a_1 = 5

 \frac{1}{a} = 5

⇒ a =  \frac{1}{5}

_____________________

And also,.

a_{20} = 25

 \frac{1}{a + (20-1)d} = 25

 \frac{1}{\frac{1}{5} + (19)d} = 25

⇒   \frac{1}{5} + 19d =  \frac{1}{25}

19d =  \frac{1}{25} -  \frac{1}{5}

19d =  \frac{1- 5}{25}

19d =  \frac{- 4}{25}

d =  \frac{-4}{25(19)}

d =  \frac{-4}{475}

__________________________

Hence,.

We need to find the value of n for which the least a_n \ \textless \ 0

 \frac{1}{a + (n-1)d} &lt; 0

 \frac{1}{ \frac{1}{5} + (n-1)( \frac{-4}{475} ) } \ \textless \  0

\frac{1}{ \frac{1}{5} + ( \frac{4-4n}{475} ) } \ \textless \  0

 \frac{1}{ \frac{95}{475} +  \frac{4 - 4n}{475} } \ \textless \  0

\frac{1}{ \frac{95 + 4 - 4n}{475}  } \ \textless \  0

\frac{1}{ \frac{99 - 4n}{475} } \ \textless \  0

 \frac{475}{99 - 4n} \ \textless \   \frac{0}{1}

99 - 4n \ \textless \   \frac{0}{475}

99 - 4n \ \textless \  0

-4n \ \textless \  -99

 n \ \textless \  \frac{-99}{-4}

 n \ \textless \  \frac{99}{4}

n \ \textless \   24.75

As,

We know that,

⇒ n  is less than 24.75

&

⇒ n can't be in decimals,.

Hence,

⇒ n = 24,.
_____________________________________________________________

                                          Hope it Helps !!

 

Answered by devarchanc
7

Harmonic progression

Step-by-step explanation:

Harmonic progression is reciprocal of arithmetic progression

Given a1,a2,a3,.....are in harmonic progression

          First term a1=5 and

          20th term a20=25

1/5,........,1/25(20th term)........1/n(nth term)

Formula for 20th term

1/a20=1/a1+(n-1)d

1/a20=1/a1+1/(n-1)d        

1/25-1/5=19d\\1/d=-4/(19*25)\\d=-4/(25*19)

Harmonic  progresssion for least positive integer nth (n<0)

an&lt;0\\a=(n-1)d&lt;0\\1/5-[4/(19*25)](n-1)]&lt;0\\1/5&lt;[4(n-1)]/(19*25)\\4(n-1)&gt;19*5\\4n-4&gt;95\\4n&gt;99\\n&gt;24.75

Harmonic progression for least positive integer nth<0 is 24.75

Similar questions