If a1,a2,a3 are in gp such that a1 + a2 + a3 =13 and (a1)^2 +(a2)^2 +(a3)^2 = 91 then find a and r
Answers
Given :-
- a1,a2,a3 are in GP.
- a1 + a2 + a3 =13
- (a1)^2 +(a2)^2 +(a3)^2 = 91
To find :-
- a & r ?
Formula used :-
- (a + b +c)² = a² + b² + c² + 2(ab + bc + ca)
- nth term of a GP series is Tn = ar^(n-1)
Solution :-
→ (a1 + a2 + a3) = 13 ------ Equation (1)
Squaring both sides we get,
→ (a1 + a2 + a3)² = 13²
→ a1² + a2² + a3² + 2(a1a2 + a2a3 + a3a1) = 169
→ 91 + 2(a1a2 + a2a3 + a3a1) = 169
→ (a1a2 + a2a3 + a3a1) = (169 - 91)/2
→ (a1a2 + a2a3 + a3a1) = (78/2) = 39 . ---- Equation (2)
________________
Now,
→ a1 = a
→ a2 = ar^(2-1) = ar
→ a3 = ar^(3-1) = ar²
Putting These value in Equation (1) & (2) we get,
→ (a + ar + ar²) = 13 ------- Equation (3)
and,
→ (a*ar + ar*ar² + ar²*a) = 39
→ ar(a + ar² + ar) = 39 ------- Equation (4).
__________________
Dividing Equation (4) by Equation (3) now, we get,
→ [ ar(a + ar + ar²) ] / [ (a + ar + ar²) ] = 39/13
→ ar = 3 .
Hence, if we Assume a = 1 ,
Than,
→ r = 3 .
and, now , if we check, Equation (1),
→ a + ar + ar² = 13
→ 1 + 1*3 + 1*3² = 13
→ 1 + 3 + 9 = 13
→ 13 = 13 (Satisfy).
Also,
→ (a)² + (ar)² + (ar²)² = 91
→ 1² + (3)² + (1*3²)² = 91
→ 1 + 9 + 9² = 91
→ 10 + 81 = 91
→ 91 = 91 (Satisfy).
Therefore, we can conclude That, value of a is 1 and r is 3.
......QUESTION : If a1,a2,a3 are in gp such that a1 + a2 + a3 =13 and (a1)^2 +(a2)^2 +(a3)^2 = 91 then find a and r .Solving the above equations, we get : Substuting ,Substuting the value of : a1 + a2 + a3 =13Now we need to solve by trial and error method.Substitute different values of a and corresponding values of r and see which value holds.Solving we get :