Math, asked by dazzlina7151, 11 months ago

if a1,a2,...,a50 are in GP dn what is (a1 - a3 + a5 - ... + a49 )/ (a2 - a4 + a6 - ... + a50)?

Answers

Answered by MaheswariS
16

Answer:

\bf{\frac{a_1-a_3+a_5 - ... +a_{49}}{a_2- a_4 + a_ - ... + a_{50}}=1/r}

Step-by-step explanation:

\text{Let}\:a_1=a\:\text{and r be the common ratio}

\text{Generl term}\:"a_n"=ar^{n-1}

Now,

\frac{a_1-a_3+a_5 - ... +a_{49}}{a_2- a_4 + a_ - ... + a_{50}}

=\frac{a-ar^2+ar^4 - ... +ar^{48}}{ar- ar^3 + ar^5- ... + ar^{49})}

=\frac{a-ar^2+ar^4 - ... +ar^{48}}{r(a- ar^2 + ar^4- ... + ar^{48})}

=\frac{1}{r(1)}

=\frac{1}{r}

Similar questions