Math, asked by Faizanmfk984, 1 year ago

If a1, a2,....an are in AP with common difference d,then find the sum of the series: sind[coseca1coseca2+coseca2coseca3...cosecan-1cosecan]

Answers

Answered by Pitymys
2

If  a_1,a_2,...,a_n are in AP, then

 a_2-a_1=d\\<br />a_3-a_2=d\\<br />a_4-a_3=d\\<br />....................\\<br />....................\\<br />a_n-a_{n-1}=d .

Now,

 \sin d(\csc a_1\csc a_2+\csc a_2\csc a_3+...+\csc a_{n-1}\csc a_n)=\frac{\sin d}{\sin a_1\sin a_2}+\frac{\sin d}{\sin a_2\sin a_3}+...+\frac{\sin d}{\sin a_{n-1}\sin a_n}\\<br />\sin d(\csc a_1\csc a_2+\csc a_2\csc a_3+...+\csc a_{n-1}\csc a_n)=\frac{\sin (a_2-a_1)}{\sin a_1\sin a_2}+\frac{\sin (a_3-a_2)}{\sin a_2\sin a_3}+...+\frac{\sin (a_n-a_{n-1})}{\sin a_{n-1}\sin a_n}

 \frac{\sin (a_n-a_{n-1})}{\sin a_{n-1}\sin a_n}=\frac{\sin a_n\cos a_{n-1}-\cos a_n\sin a_{n-1}}{\sin a_{n-1}\sin a_n}=\cot a_{n-1}-\cot a_{n}

Thus the sum,

 \sin d(\csc a_1\csc a_2+\csc a_2\csc a_3+...+\csc a_{n-1}\csc a_n)=\cot a_{1}-\cot a_{2}+\cot a_{2}-\cot a_{3}+...+\cot a_{n-1}-\cot a_{n}

The above series is a telescoping series,

 \sin d(\csc a_1\csc a_2+\csc a_2\csc a_3+...+\csc a_{n-1}\csc a_n)=\cot a_{1}-\cot a_{n}

Similar questions