Math, asked by jashan8521, 1 year ago

If (a1+ib1)(a2+ib2)....(an+ibn)= A+iB, then prove Tan-1(b1/a1)+ Tan-1(b2/a2)+...+ Tan-1=nπ+tan^-1(B/A)​

Answers

Answered by MaheswariS
15

Answer:

tan^{-1}{\frac{b_1}{a_1}}+tan^{-1}{\frac{b_2}{a_2}}+....+tan^{-1}{\frac{b_n}{a_n}}=n\pi+tan^{-1}{\frac{b_n}{a_n}}

Step-by-step explanation:

Formula used:

The argument of the complex number z=x+iy is arz=tan^{-1}{\frac{y}{x}

Given:

(a_1+ib_1)(a_2+ib_2)....(a_n+ib_n)= A+iB

Taking arguement on both sides, we get

arg[(a_1+ib_1)(a_2+ib_2)....(a_n+ib_n)]= arg[A+iB]

\implies\:arg(a_1+ib_1)+arg(a_2+ib_2)+....+arg(a_n+ib_n)]= arg[A+iB]

\implies\:tan^{-1}{\frac{b_1}{a_1}}+tan^{-1}{\frac{b_2}{a_2}}+....+tan^{-1}{\frac{b_n}{a_n}}=tan^{-1}{\frac{b_n}{a_n}}

Taking general value

\implies\:tan^{-1}{\frac{b_1}{a_1}}+tan^{-1}{\frac{b_2}{a_2}}+....+tan^{-1}{\frac{b_n}{a_n}}=n\pi+tan^{-1}{\frac{b_n}{a_n}}

Similar questions