Math, asked by manish496, 10 months ago

If a1 x +biy +c1=0 and a2x +b2y+c2+0 are such that a1 b1 c1 a2 b2 c2 are consecutive integers in same order then find the value of x+y

Answers

Answered by MaheswariS
10

\textbf{Given:}

a_1x+b_1y+c_1=0

a_2x+b_2y+c_2=0

\textbf{To find:}

\text{The value of x+y}

\textbf{Solution:}

\text{Since $a_1,b_1,c_1,a_2,b_2,c_2$ are consecutive integers, we can write}

b_1=a_1+1

c_1=a_1+2

a_2=a_1+3

b_2=a_1+4

c_2=a_1+5

\text{The given equations become}

a_1x+(a_1+1)y+(a_1+2)=0

(a_1+3)x+(a_1+4)y+(a_1+5)=0}

\text{By cross multiplication rule, we get}

\dfrac{x}{(a_1+1)(a_1+5)-(a_1+2)(a_1+4)}=\dfrac{y}{(a_1+2)(a_1+3)-a_1(a_1+5)}

=\dfrac{1}{a_1(a_1+4)-(a_1+1)(a_1+3)}

\dfrac{x}{{a_1}^2+6\,a_1+5-{a_1}^2-6\,a_1-8}=\dfrac{y}{{a_1}^2+5\,a_1+6-{a_1}^2-5\,a_1}=\dfrac{1}{{a_1}^2+4\,a_1-{a_1}^2-4\,a_1-3}

\dfrac{x}{-3}=\dfrac{y}{6}=\dfrac{1}{-3}

\implies\dfrac{x}{-3}=\dfrac{1}{-3}

\implies\,x=1

\text{and}

\dfrac{y}{6}=\dfrac{1}{-3}

\implies\,y=-2

x+y=1+(-2)=-1

\therefore\textbf{The value of $\bf\,x+y$ is -1}

Similar questions