Math, asked by kutinglibzz, 6 months ago

If a13 = 51 and d = 4, what is S13​

Answers

Answered by mysticd
13

 Given \: in \: an \: A.P : a_{13} = 51 \:and \:d=4

/* We know that */

 \boxed{\pink{ n^{th} \:term \:(a_{n}) = a+(n-1)d}}

 i ) a_{13} = 51

 \implies a + ( 13 - 1 )\times 4 = 51

 \implies a + 12 \times 4 = 51

 \implies a + 48 = 51

 \implies a  = 51 - 48

 \implies a = 3

/* We know that */

 \boxed{\blue{ Sum \:of \: n\: terms (S_{n})= \frac{n}{2}[2a + (n-1)d ]}}

 Here, a = 3, d = 4 \:and \: n = 13

\red{ S_{13} }\\= \frac{13}{2}[ 2 \times 3 + ( 13 - 1) \times 4 ] \\= \frac{13}{2}[ 6 + 12 \times 4 ] \\= \frac{13}{2} [ 6 + 48 ]\\= \frac{13}{2} \times 54 \\= 13 \times 27 \\= 351

Therefore.,

 \red{ S_{13}} \green { = 351}

•••♪

Similar questions