Math, asked by samiasalamnisa, 4 months ago

If a2+1=4a,what is the value of a4+1/a4

Answers

Answered by IIJustAWeebII
4

 \large{ \text{ \underline{Given}}}

  \sf{ {a}^{2}  + 1 = 4a}

  \sf{ =  > a +  \frac{1}{a}  = 4 } \:  \:  \mathcal{ \blue{(Dividing \: "a"\: in \: both \: sides)}}

 \large{ \underbrace{ \red{ \text{✿Solution}}}}

  {a}^{4}  +  \frac{1}{ {a}^{4} }

 =    (  {a}^{2} ) {}^{2}  +  (\frac{1}{ {a}^{2} } ) {}^{2}

= ( {a}^{2}  +  \frac{1}{ {a}^{2} } ) {}^{2}  - 2 \times  {a}^{2}  \times  \frac{1}{ {a}^{2} }

=   ((a) {}^{2}  +  (\frac{1}{a} ) {}^{2} ) {}^{2}  - 2

 =  ( (a +  \frac{1}{a} ) {}^{2}  - 2 \times a \times  \frac{1}{a} ) {}^{2}  - 2

 =  ( 4 {}^{2}  - 2) {}^{2}  - 2

=    (16 - 2) {}^{2}  - 2

 =   196 - 2

 \sf{ \orange{ \boxed{ =   194}}}

Hope this helps!

Answered by debparna
0

Answer:

pls complete my thnks

pls follow

Similar questions