Math, asked by lalsarika120, 4 months ago

If a² + 1/a^2=18 Find (i) a -1/a (ii) a^3 +1/a^3​

Answers

Answered by amansharma264
11

EXPLANATION.

⇒ a² + 1/a² = 18.

To find.

(1) = a - 1/a.

(2) = a³ + 1/a³.

It is in the form of = ( a² + b² ).

⇒ (a² + b² ) = ( a - b )² + 2ab.

⇒ ( a - 1/a )² + 2 X (a) X (1/a) = 18.

⇒ ( a - 1/a )² + 2 = 18.

⇒ ( a - 1/a )² = 16.

⇒ ( a - 1/a ) = √16.

⇒ ( a - 1/a ) = 4.

Value of = ( a - 1/a ) = 4.

Another formula of ( a² + b² ).

⇒ (a² + b² ) = ( a + b)² - 2ab.

⇒ ( a + 1/a)² - 2 X (a) X (1/a) = 18.

⇒ ( a + 1/a)² - 2 = 18.

⇒ (a + 1/a)² = 20.

⇒ (a + 1/a) = √20.

⇒ ( a + 1/a ) = 2√5.

Formula of ( a³ + b³ ).

(a³ + b³ ) = ( a + b) ( a² + b² - ab).

Put the value in equation, we get.

⇒ (2√5) ( a² + 1/a² - (a) X (1/a).

⇒ (2√5 ) ( a² + 1/a² - 1 ).

⇒ ( 2√5 ) ( 18 - 1 ).

⇒ ( 2√5 ) ( 17).

⇒ 34√5.

(1) = Value of ( a - 1/a ) = 4.

(2) = Value of ( a³ + 1/a³ ) = 34√5.


rizikasiddhi40: why its so so long??
rizikasiddhi40: just tell the i) and ii) one not the other steps
lalsarika120: yup
Answered by Anonymous
10

\huge\boxed{\underline{\sf{\red{A}\green{n}\purple{s}\orange{w}\blue{e}\pink{r:-}}}}

⇒ a² + 1/a² = 18.

To find.

To find.1.= a - 1/a.

To find.1.= a - 1/a.2. = a³ + 1/a³.

It is in the form of = ( a² + b² ).

⇒ (a² + b² ) = ( a - b )² + 2ab.

⇒ ( a - 1/a )² + 2 X (a) X (1/a) = 18.

⇒ ( a - 1/a )² + 2 = 18.

⇒ ( a - 1/a )² = 16.

⇒ ( a - 1/a ) = √16.

⇒ ( a - 1/a ) = 4.

Value of = ( a - 1/a ) = 4.

Another formula of ( a² + b² ).

⇒ (a² + b² ) = ( a + b)² - 2ab.

⇒ ( a + 1/a)² - 2 X (a) X (1/a) = 18.

⇒ ( a + 1/a)² - 2 = 18.

⇒ (a + 1/a)² = 20.

⇒ (a + 1/a) = √20.

⇒ ( a + 1/a ) = 2√5.

Formula of ( a³ + b³ ).

(a³ + b³ ) = ( a + b) ( a² + b² - ab).

Put the value in equation, we get.

⇒ (2√5) ( a² + 1/a² - (a) X (1/a).

⇒ (2√5 ) ( a² + 1/a² - 1 ).

⇒ ( 2√5 ) ( 18 - 1 ).

⇒ ( 2√5 ) ( 17).

⇒ 34√5.

(1) = Value of ( a - 1/a ) = 4.

(2) = Value of ( a³ + 1/a³ ) = 34√5.

Hope it helped you ✌

★Be Brainly★

Similar questions