Math, asked by yukthesh06, 8 months ago

If a2+1/a2=14. find a+1/a ii) a-1/a. iii) a2-1/a2​

Answers

Answered by pulakmath007
5

SOLUTION

GIVEN

\displaystyle\sf{  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 14}

TO DETERMINE

The value of

\displaystyle\sf{ i) \:  \:  {a}^{}  +  \frac{1}{ {a}^{} }  }

\displaystyle\sf{ ii) \:  {a}^{}   -  \frac{1}{ {a}^{} }  }

\displaystyle\sf{ iii) \:  \:  {a}^{2}   -   \frac{1}{ {a}^{2} }  }

EVALUATION

Here it is given that

\displaystyle\sf{  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 14}

\displaystyle\sf{ \implies \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{2} - 2.a. \frac{1}{a}   = 14}

\displaystyle\sf{ \implies \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{2} - 2 = 14}

\displaystyle\sf{ \implies \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{2} = 16}

\displaystyle\sf{ \implies \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{} =4}

\displaystyle\sf{ i) \:  \:  \:  { \bigg(a +  \frac{1}{a}  \bigg)}^{} = 4}

ii)

\displaystyle\sf{  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 14}

\displaystyle\sf{ \implies \:  { \bigg(a  -   \frac{1}{a}  \bigg)}^{2}  +  2.a. \frac{1}{a}   = 14}

\displaystyle\sf{ \implies \:  { \bigg(a  -   \frac{1}{a}  \bigg)}^{2}  +  2  = 14}

\displaystyle\sf{ \implies \:  { \bigg(a  -   \frac{1}{a}  \bigg)}^{2}   = 12}

\displaystyle\sf{ \implies \:  { \bigg(a  -   \frac{1}{a}  \bigg)}^{}   =2 \sqrt{3} }

iii)

\displaystyle\sf{   {a}^{2}   -   \frac{1}{ {a}^{2} }  }

\displaystyle\sf{  =  \:  { \bigg(a   +   \frac{1}{a}  \bigg)}^{}  { \bigg(a  -   \frac{1}{a}  \bigg)}^{}  }

\displaystyle\sf{  = 4 \times 2 \sqrt{3}  }

\displaystyle\sf{  = 8 \sqrt{3}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

2. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

Similar questions