Math, asked by gaurigupta11032007, 1 month ago

if (a²+1/a²)=14 then find (a²-1/a²)​

Answers

Answered by tafajulsk950
0

Answer:

a²+1/a²=14

or,a²+1=14a²

or,14a²-a²=1

or,13a²=1

or,a²=1/13

So, a²-1/a²=(1/13)²-1/(1/13)²

=(1/169-1)/(1/169)

={(1-169)/169}(1/169)

= -168/169×169

= -168

Answered by DeeznutzUwU
1

       \underline{\bold{Answer:}}

       8\sqrt3

       \underline{\bold{Step-by-step-explaination:}}

       \text{It is given that:}

       \boxed{a^{2} + \frac{1}{a^{2}} = 14}

       \text{Squaring both sides}

\implies \boxed{(a^{2} + \frac{1}{a^{2}})^{2}  = (14)^{2} }

       \text{We know that }(a+b)^{2} = a^{2} +b^{2} +2ab

\implies \boxed{(a^{2})^{2} + (\frac{1}{a^{2}})^{2} + 2(a^{2})(\frac{1}{a^{2}})  = 196  }

\implies \boxed{a^{4} + \frac{1}{a^{4}} + 2  = 196}

\implies \boxed{a^{4} + \frac{1}{a^{4}}   = 194} \text{ ------(i)}

       \text{We know that }(a-b)^{2} = a^{2} +b^{2} -2ab

\implies \boxed{(a^{2}- \frac{1}{a^{2}})^{2} = (a^{2})^{2} +(\frac{1}{a^{2}})^{2} - 2(a^{2})(\frac{1}{a^{2}})   }

\implies \boxed{(a^{2}- \frac{1}{a^{2}})^{2} = a^{4} +\frac{1}{a^{4}} - 2}

       \text{From (i)}

\implies \boxed{(a^{2}- \frac{1}{a^{2}})^{2} = 194 - 2}

\implies \boxed{(a^{2}- \frac{1}{a^{2}})^{2} = 192}

\implies \boxed{a^{2}- \frac{1}{a^{2}} = \sqrt{192}}

\implies \boxed{a^{2}- \frac{1}{a^{2}} = 8\sqrt3}

Similar questions