Math, asked by ishasrivastava564, 4 months ago

if a2 + 1/a2 = 18
Find:
i) a-1/a
ii)a3 +1/a3​

Answers

Answered by bson
2

Step-by-step explanation:

i)a²+ 1/a² =18

deduct 2 on both sides

a²+1/a² -2 = 18-2

2 = 2× a×1/a

a²+1/a² -2*a*1/a = 16

(a - 1/a)² =4²

a-1/a = 4

ii) a²+1/a² =18

add 2 on both sides

a²+1/a² +2*a*1/a = 18+2

(a+1/a)² = 20

(a+1/a) = 2×root5

a³+1/a³ = (a+1/a)(a²+1/a²-a*1/a)

=2*root5×(18-1)

= 2* root5 × 17

= 34*root5

Answered by Anonymous
14

 \sf Given -  \\ \\    \sf \:  \:  \: {a}^{2}  +  \frac{1}{ {a}^{2}  }  = 18

 \sf \: We  \: know \:  the  \: formula, \\  \\  \boxed{ \underline{ \sf{ { {(a -  \frac{1}{a}) }^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2}}}}

 \sf \:  {i) \: (a -  \frac{1}{a} )}^{2}  = 18 - 2 \\  \\  \sf \: a -  \frac{1}{a}  =  \sqrt{16}  \\  \\  \sf \:  = 4 \: units \: ..(ans)

 \sf \: We  \: know \:  the  \: formula, \\  \\  \boxed{ \underline{ \sf{ {(a   -  \frac{1}{a}) }^{3}  =  {a}^{3} +  \frac{1}{ {a}^{3} }  - 3(a -  \frac{1}{a} ) }}}

 \sf \: ii) \:  {(4)}^{3}  =  {a}^{3}  +   \frac{1}{ {a}^{3} }  - 3(4) \\  \\  \sf \: 64 \:  =  {a}^{3}  +  \frac{1}{ {a}^{3} }  - 12 \\  \\  \sf \: 64 + 12 =  {a}^{3}  +  \frac{1}{ {a}^{3} }  \\  \\  \sf \implies \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 76 \: units \: ...(ans)

Similar questions
Math, 2 months ago