Math, asked by sdhruvikajain8b11, 27 days ago

if a2+1/a2 = 23 find the value of a+1/a

Answers

Answered by nickagg
1

Answer:

5

Step-by-step explanation:

(a+1/a)^2 = a^2+1/a^2 + 2 . a.1/a

(a+1/a)^2= 23+2

(a+1/a)^2= 25

(a+1/a)= root 25

(a+1/a) = 5

hope this will help you

pls mark me a brainlist

Answered by Anonymous
17

Answer

  • The value of \bold{a +  \cfrac{1}{a }  = 5}

Given

  • The value of  \sf {a}^{2}  +  \cfrac{1}{ {a}^{2} }  = 23

To Find

  • The value of \sf a +  \cfrac{1}{a}

Step By Step Explanation

In this question we have given the value of \sf {a}^{2}  +  \cfrac{1}{ {a}^{2} }  = 23.

We need to find the value of \sf a +  \cfrac{1}{a}

So let's do it !!

Identity Used :

 \bigstar \:  \:  \:  \:  \underline{\boxed{ \bold{ \purple{{(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}}}

By substituting the values :

:\implies{\sf{ \bigg(a +  \cfrac{1}{a} \bigg) }^{2}  =   {a}^{2}  + \cfrac{1}{ {a}^{2} }  +  \bigg(2  \times a \times  \cfrac{1}{a}  \bigg)} \\  \\ :\implies{\sf{ \bigg(a +  \cfrac{1}{a} \bigg) }^{2}  =   {a}^{2}  + \cfrac{1}{ {a}^{2} }  +  \bigg(2  \times  \cancel{a} \times  \cfrac{1}{ \cancel{a}}  \bigg)} \\  \\ :\implies{\sf{ \bigg(a +  \cfrac{1}{a} \bigg) }^{2}  =   {a}^{2}  + \cfrac{1}{ {a}^{2} }  +  2} \\  \\ :\implies{\sf{ \bigg(a +  \cfrac{1}{a} \bigg) }^{2}  =   ( 23)  +  2}  \\  \\:\implies {\sf{ \bigg(a +  \cfrac{1}{a} \bigg) }^{2}  = 25} \\  \\:\implies  {\sf{a +  \cfrac{1}{a} }  =  \sqrt{25}} \\  \\ :\implies  \underline{\boxed{\bold{\green{a +  \cfrac{1}{a} =  5}}}} \:  \:  \:  \:  \dag

Therefore, the value of  \bold{a +  \cfrac{1}{a }  = 5}

__________________________

Similar questions