Math, asked by adrikabrahma26, 2 months ago

if a² +1/ a² = 23 find the value of a³ + 1/a³ ( hint: b² = ac)​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ a² + 1/a² = 23.

As we know that,

⇒ (a + 1/a)² = a² + 1/a² + 2(a)(1/a).

⇒ (a + 1/a)² = a² + 1/a² + 2.

Put the value of a² + 1/a² = 23 in the equation, we get.

⇒ (a + 1/a)² = 23 + 2.

⇒ (a + 1/a)² = 25.

⇒ (a + 1/a) = √25.

⇒ (a + 1/a) = 5.

As we know that,

⇒ (a³ + 1/a³) = (a + 1/a)(a² + 1/a² - (a)(1/a)).

⇒ (a³ + 1/a³) = (a + 1/a)(a² + 1/a² - 1).

Put the values in the equation, we get.

⇒ (a³ + 1/a³) = (5)(23 - 1).

⇒ (a³ + 1/a³) = 5(22).

(a³ + 1/a³) = 110.

Answered by Mohana4703
1

Answer:

110

Step-by-step explanation:

Given,

a²+ 1/a² = 23

Applying the formula: (a + b)² = a² + b² + 2ab

a² + b² = (a + b)² - 2ab

Putting the given value:

23 = (a + 1/a )² - ( 2 × a × 1/a )

23 = (a + 1/a )² - 2

23 + 2 = (a + 1/a )²

(a + 1/a ) = √25

(a + 1/a ) = 5

To find: a³ + 1/a³

Applying the formula: (a + b)³ = a³ + b³ + 3a²b + 3ab²

(a + 1/a )³ = a³ + 1/a³ + ( 3 × a² × 1/a ) + ( 3 × a × 1/a² )

(5)³ = a³ + 1/a³ + 3a + 3/a

125 = a³ + 1/a³ + 3 (a + 1/a )

125 = a³ + 1/a³ + 3 (5)

125 = a³ + 1/a³ + 15

a³ + 1/a³ = 125 - 15

a³ + 1/a³ = 110

Similar questions