Math, asked by cocococo111, 7 months ago

if a²+(1/a²) = 23,
then find a³+(1/a³)

Attachments:

Answers

Answered by tennetiraj86
1

Step-by-step explanation:

Given that :-

+(1/)=23

=>(a+1/a)²-2(a)(1/a)=23(cancelling a)

=>(a+1/a)²-2=23

=>(a+1/a)²=23+2

=>(a+1/a)²=25

=>a+1/a=25

=>a+1/a=5

and

+1/=(a+1/a)(-a(1/a)+1/)

(cancelling a)

+(1/a)³=(a+1/a)(+1/-1)

=>+(1/a)³=5(23-1)

=>a³+(1/a)³=5(22)

=>+(1/a)³=110

Answer:-

a³+(1/a)³=110

Used formulae:-

(a+b)²=+2ab+

(+)=(a+b)(-ab+)

Answered by Darkrai14
1

Given

\rm a^2+\dfrac{1}{a^2} = 23

To find

\rm a^3+\dfrac{1}{a^3}

Solution

First, we will find a+1/a

\rm a^2+\dfrac{1}{a^2} = 23

We know that,

(a+b)² = a²+b²+2ab

So,

a²+b² = (a+b)² - 2ab

Therefore,

\rm a^2+\dfrac{1}{a^2} \ can \ be \ written \ as \ \Bigg ( a+ \dfrac{1}{a} \Bigg )^2- 2 \times a \times \dfrac{1}{a}

Hence,

\rm a^2+\dfrac{1}{a^2} = 23

\rm\dashrightarrow \Bigg ( a+ \dfrac{1}{a} \Bigg )^2- 2 \times a \times \dfrac{1}{a} = 23

\rm\dashrightarrow \Bigg ( a+ \dfrac{1}{a} \Bigg )^2- 2 = 23

\rm\dashrightarrow \Bigg ( a+ \dfrac{1}{a} \Bigg )^2 = 23+2

\rm\dashrightarrow \Bigg ( a+ \dfrac{1}{a} \Bigg )^2 = 25

\rm\dashrightarrow a+ \dfrac{1}{a} = \sqrt{25}

\bf\dashrightarrow a+ \dfrac{1}{a} = 5

Cubing both the sides,

\rm\dashrightarrow \Bigg ( a+ \dfrac{1}{a} \Bigg )^3=( 5)^3

Since, (a+b)³ = a³+b³+3ab(a+b), hence

\rm\dashrightarrow (a)^3 +\Bigg (\dfrac{1}{a} \Bigg )^3 + 3\times a \times \dfrac{1}{a} \Bigg (a+\dfrac{1}{a} \Bigg )=125

\rm\dashrightarrow a^3+\dfrac{1}{a^3} + 3(5 )=125

\rm\dashrightarrow a^3+\dfrac{1}{a^3} + 15=125

\rm\dashrightarrow a^3+\dfrac{1}{a^3} =125-15

\bf\dashrightarrow a^3+\dfrac{1}{a^3} =110

Similar questions