if a²+(1/a²) = 23,
then find a³+(1/a³)
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Given that :-
a²+(1/a²)=23
=>(a+1/a)²-2(a)(1/a)=23(cancelling a)
=>(a+1/a)²-2=23
=>(a+1/a)²=23+2
=>(a+1/a)²=25
=>a+1/a=√25
=>a+1/a=5
and
a³+1/a³=(a+1/a)(a²-a(1/a)+1/a²)
(cancelling a)
a³+(1/a)³=(a+1/a)(a²+1/a²-1)
=>a³+(1/a)³=5(23-1)
=>a³+(1/a)³=5(22)
=>a³+(1/a)³=110
Answer:-
a³+(1/a)³=110
Used formulae:-
(a+b)²=a²+2ab+b²
(a³+b³)=(a+b)(a²-ab+b²)
Answered by
1
Given
To find
Solution
First, we will find a+1/a
We know that,
(a+b)² = a²+b²+2ab
So,
a²+b² = (a+b)² - 2ab
Therefore,
Hence,
Cubing both the sides,
Since, (a+b)³ = a³+b³+3ab(a+b), hence
Similar questions
Economy,
3 months ago
Math,
3 months ago
World Languages,
3 months ago
Math,
11 months ago
Math,
11 months ago