Math, asked by singhshreya22diya33, 1 month ago

if a²+1/a²=27 find a+1/a and a³+1/a³​

Answers

Answered by mathdude500
7

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} } = 27

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:(i) \:  \: a + \dfrac{1}{a}  \\ \\  \rm :\longmapsto\:(ii) \:  {a}^{3} + \dfrac{1}{ {a}^{3}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} } = 27

Adding 2 on both sides, we get

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2= 27 + 2

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2 \times a \times \dfrac{1}{a} = 29

\rm :\longmapsto\: {\bigg(a + \dfrac{1}{a}  \bigg) }^{2} = 29

\bf\implies \:a + \dfrac{1}{a}  \: =  \:  \pm \:  \sqrt{29}

Now,

We know,

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} }

\rm \:  =  \: {\bigg(a + \dfrac{1}{a}  \bigg) }^{3} - 3 \times a \times \dfrac{1}{a} \times \bigg(a + \dfrac{1}{a}  \bigg)

\rm \:  =  \: {\bigg(a + \dfrac{1}{a}  \bigg) }^{3} - 3  \bigg(a + \dfrac{1}{a}  \bigg)

Now,

Case :- 1

\red{\rm :\longmapsto\:When \: a =  \sqrt{29}}

So,

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } =  {( \sqrt{29} )}^{3} - 3( \sqrt{29})

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } =  29 \sqrt{29}  - 3\sqrt{29}

\bf :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } =  26\sqrt{29}

Case :- 2

\red{\rm :\longmapsto\:When \: a  \: =  -  \:  \sqrt{29}}

So,

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } =  {( -  \sqrt{29} )}^{3} - 3(  - \sqrt{29})

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } =  -  \:  29 \sqrt{29}  +  3\sqrt{29}

\bf :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } \:  =   -  \: 26\sqrt{29}

Additional Information :-

\boxed{ \rm \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}

\boxed{ \rm \: {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}

\boxed{ \rm \: {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}

\boxed{ \rm \: {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)}

\boxed{ \rm \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}

\boxed{ \rm \: {x}^{3}  -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2})}

\boxed{ \rm \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}

Answered by ItzImran
101

\huge\color{aqua}\ \boxed{\colorbox{black}{Answer : ♞ }}

(i) \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 47

Adding \: 2 \: to \: both \: sides, \: we \: get

 =  >  {a}^{2}  +   \frac{1}{ {a}^{2} }  + 2 = 47 + 2

 =  > (a +  \frac{1}{a} ) = 49

Taking \: square \: root \: of \: both \\ sides, \: we \: get :

  =  > \sqrt{(a +  \frac{1}{a})^{2}  }  =  \sqrt{49}

 =  >  \sqrt{(a +  \frac{1}{a}) ^{2}  }  =  \sqrt{7 \times 7}

 \color{blue} =  > a +  \frac{1}{a}  = 7

(ii)  \: given :a +  \frac{1}{ {a}^{2} }  = 7

Cubing \: both  \: sides, \: we \: get :

 =  >  \: (a +  \frac{1}{ {a} } ) ^{3}  = (7) ^{3}

 =  > (a) ^{3}  + ( \frac{1}{a} ) ^{3}  + 3 \times a \times   \\ \frac{1}{a} (a +  \frac{1}{a} ) = 7 \times 7 \times 7

 =  >  {a}^{3}  +  \frac{1}{a ^{3} }  + 3(a +  \frac{1}{a} ) = 343

Putting \: the \: value \: of \:a +  \frac{1}{a}, \: we \: get :

 {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3(7) = 343

 =  > a ^{3}  +  \frac{1}{ {a}^{3} }  + 21 = 343

 =  >  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 343 - 21

 =  >  {a}^{3}  +  \frac{1}{a ^{3} }  = 322

Similar questions