Math, asked by ashakujur388, 9 months ago

if a²+1/a²=34 then find a-1/a​

Answers

Answered by BrainlyIAS
9

Answer

a - 1/a = ± 4√2

Given

\bullet \;\; \rm a^2+\dfrac{1}{a^2}=34

To Find

\bullet \;\; \rm a-\dfrac{1}{a}

Solution

\rm a^2+\dfrac{1}{a^2}=34\\\\\to \rm \left(a-\dfrac{1}{a}\right)^2+2=34\\\\\to \rm \left(a-\dfrac{1}{a}\right)^2=34-2\\\\\to \rm \left(a-\dfrac{1}{a}\right)^2=32\\\\\to \rm \left(a-\dfrac{1}{a}\right)=\pm \sqrt{32}\\\\\to \rm \left(a-\dfrac{1}{a}\right)=\pm 4\sqrt{2}\ \bigstar

Answered by Bᴇʏᴏɴᴅᴇʀ
15

ANSWER:-

Given:-

a^2+ \dfrac{1}{a^2}=34

To Find:-

a-\dfrac{1}{a}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution:-

\longrightarrow{a^2+\dfrac{1}{a^2}=34}

\longrightarrow{(a-\dfrac{1}{a})^2+2=34}

\longrightarrow{(a-\dfrac{1}{a})^2=34-2}

\longrightarrow{(a-\dfrac{1}{a})^2=32}

\longrightarrow{(a-\dfrac{1}{a})=\pm \sqrt{32}}

\implies(a-\dfrac{1}{a})=\pm 4\sqrt{2}

Therefore,

(a-\dfrac{1}{a})\implies {\bf{\pm 4\sqrt{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions