Math, asked by swethasureddy6235, 10 months ago

If a²+1/a²=47 and a is not equal to 0 then find a³+1/a³

Answers

Answered by Anonymous
4

 \bf \red Solutio \red {n}

(a +  \frac{1}{a} ) {}^{2}  =  {a}^{2}  +  \frac{1}{a {}^{2} }  + 2 \times a \times  \frac{1}{a}

\rightarrow \: (a +  \frac{1}{a} ) {}^{2}  = a {}^{2}  +  \frac{1}{a {}^{2} }  + 2

\rightarrow \: (a +  \frac{1}{a} ) {}^{2}  = 47 + 2

 \rightarrow \: (a +  \frac{1}{a} ) {}^{2}  = 49

 \rightarrow(a +  \frac{1}{a} )   =   \sqrt{49}

 \rightarrow \red {a +  \frac{1}{a}  = 7}

  \star \: \orange{Cubing  \: both  \: sides }

(a +  \frac{1}{a} ) {}^{3}  =( 7) {}^{3}

  \rightarrow{a}^{3}  +  \frac{1}{  {a}^{3} }  + 3(a +  \frac{1}{a} ) = 343

 \rightarrow \:  {a}^{3}  +  \frac{1}{a {}^{3} } + 3 \times 7  = 343

 \rightarrow \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 343 - 21

 \rightarrow  \blue{{a}^{3}  +  \frac{1}{ {a}^{3} }  }= \purple{ 322}

Answered by Anonymous
4

Given :

  {a}^{2}  + \dfrac{1}{ {a}^{2} }  = 47

a ≠ 0

To find :

 {a}^{3}  +  \dfrac{1}{ {a}^{3} }

Solution :

By using identity : (a + b)² = a² + b² + 2ab

=> {(a +  \dfrac{1}{a}) }^{2}  =  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  + 2 \times a \times  \dfrac{1}{a}

=> {(a +  \dfrac{1}{a}) }^{2}  =  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  + 2

=> {(a +  \dfrac{1}{a}) }^{2} = 47 + 2

=> {(a +  \dfrac{1}{a}) }^{2}  = 49

=> (a +  \dfrac{1}{a}) =  \sqrt{49}

=> (a +  \dfrac{1}{a})  = 7

Now, cubing both sides

=> {(a +  \dfrac{1}{a}) }^{3}  =  {(7)}^{3}

Using identity : (a + b)³ = a³ + b³ + 3ab(a + b)

=>  {a}^{3}  +  \dfrac{1}{ {a}^{3} }  + 3 \times a \times  \dfrac{1}{a}(a +  \dfrac{1}{a}) = 343

=>  {a}^{3}  +  \dfrac{1}{ {a}^{3} }  + 3  \times 7 = 343

=>  {a}^{3}  +  \dfrac{1}{ {a}^{3} } = 343  - 21

=> {a}^{3}  +  \dfrac{1}{ {a}^{3} }  = 322

Answer :

{a}^{3}  +  \dfrac{1}{ {a}^{3} }  = 322

Similar questions