Math, asked by ritik3044, 1 year ago

If a² - 12ab + 4b² = 0, prove that \log (a + 2b) = \frac{1}{2} (\log a + \log b) + 2\log 2.

Answers

Answered by abhi178
0
concepts : log(AB)=logA+logB.....(1)

log\frac{A}{B}=logA-logB........(2)

logA^n=nlogA.........(3)

it is given that, a² - 12ab + 4b² = 0

or, a² + 4b² = 12ab

or, a² + 4b² + 4ab = 4ab + 12ab

or, a² + 4b² + 4ab = 16ab

or, (a + 2b)² = 16ab

taking log both sides,

log(a + 2b)² = log(16ab)

or, 2log(a + 2b) = log(16ab) [ using formula (3), ]

or, 2log(a + 2b) = log16 + loga + logb [ using formula (1), ]

or, 2log(a + 2b) = log2⁴ + loga + logb

or, 2log(a + 2b) = 4log2 + loga + logb

or, log(a + 2b) = 2log2 + 1/2[ loga + logb ]

hence, \log (a + 2b) = \frac{1}{2} (\log a + \log b) + 2\log 2
Similar questions