If a² - 12ab + 4b² = 0, prove that .
Answers
Answered by
0
concepts : .....(1)
........(2)
.........(3)
it is given that, a² - 12ab + 4b² = 0
or, a² + 4b² = 12ab
or, a² + 4b² + 4ab = 4ab + 12ab
or, a² + 4b² + 4ab = 16ab
or, (a + 2b)² = 16ab
taking log both sides,
log(a + 2b)² = log(16ab)
or, 2log(a + 2b) = log(16ab) [ using formula (3), ]
or, 2log(a + 2b) = log16 + loga + logb [ using formula (1), ]
or, 2log(a + 2b) = log2⁴ + loga + logb
or, 2log(a + 2b) = 4log2 + loga + logb
or, log(a + 2b) = 2log2 + 1/2[ loga + logb ]
hence,
........(2)
.........(3)
it is given that, a² - 12ab + 4b² = 0
or, a² + 4b² = 12ab
or, a² + 4b² + 4ab = 4ab + 12ab
or, a² + 4b² + 4ab = 16ab
or, (a + 2b)² = 16ab
taking log both sides,
log(a + 2b)² = log(16ab)
or, 2log(a + 2b) = log(16ab) [ using formula (3), ]
or, 2log(a + 2b) = log16 + loga + logb [ using formula (1), ]
or, 2log(a + 2b) = log2⁴ + loga + logb
or, 2log(a + 2b) = 4log2 + loga + logb
or, log(a + 2b) = 2log2 + 1/2[ loga + logb ]
hence,
Similar questions