Math, asked by nights9, 8 months ago

if a² -3a -1= 0 find a²+1/a² solve the linear expansions​

Answers

Answered by Anonymous
70

Given:-

  • a² - 3a - 1 = 0

To Find:-

  • \rm{a^{2} + 1/a^{2}}

Now,

\sf{ a^{2} - 3a - 1 = 0}

\sf{ a^{2} - 3a = 1}

  • Dividing it by a

\sf{ a - 3 = \dfrac{1}{a}}

\sf{ -3 = \dfrac{1}{a} - a }

  • Squaring Both sides

\sf{ (-3)^2 = (\dfrac{1}{a} - a )^2}

\sf{ 9 = a^2 +\dfrac{1} {a^2} - 2\times{a}\times{\dfrac{1} {a}}

\sf{ 9 = a^2 +\dfrac{1}{a^2} - 2\times{\cancel{a}}\times{\dfrac{1}{\cancel{a}}}

\sf{ 9 + 2 = a^2 +\dfrac{1}{a^2}}

\sf{ 11 = a^2 +\dfrac{1}{a^2}}

Hence, The Value of + 1/ is 11.

Answered by AKStark
0

Answer:

GIVEN:

 {a}^{2}  - 3a - 1 = 0

TO FIND:

a^2+1/a^2

SOLUTION:

a^2-3a-1=0

=>a^2-3a=1

DIVIDING BOTH SIDES BY a.

1/a(a^2-3a)=1/a

=>a-3=1/a

=>a=1/a+3

=>-3=1/a-a

SQUARING BOTH SIDES:

 ({ - 3})^{2} =  ({ \frac{1}{a}  - a) }^{2}

=9+2=1/a^2+a^2

=11=1/a^2+a^2 (ANSWER)

Similar questions