Math, asked by Sneha19062006, 7 months ago

If a² -3a - 1 =0 find the value of (a+1/a)​

Answers

Answered by Anonymous
2

Answer:

</p><p>{a}^{2} - 4a - 1 = 0a2−4a−1=0 \\ </p><p></p><p>{a}^{2} - 4a = 1a2−4a=1 \\ </p><p></p><p>{a}^{2} - 4a + 4 = 1 + 4 = 5a2−4a+4=1+4=5 \\ </p><p></p><p>{(a - 2)}^{2} = 5(a−2)2=5 \\ </p><p></p><p>a - 2 = \sqrt{5}a−2=5 \\ </p><p></p><p>a = 2 + \sqrt{5}a=2+5 \\ </p><p></p><p>a + \frac{1}{a}a+a1 \\ </p><p></p><p>(2 + \sqrt{5} ) + \frac{1}{(2 +  \sqrt{5}) }(2+5)+(2+5)1 \\ </p><p></p><p>\frac{ {(2 + \sqrt{5}) }^{2} + 1 }{2  + \sqrt{5} }2+5(2+5)2+1 \\ </p><p></p><p>\frac{4 + 5 + 4 \sqrt{5} + 1 }{2 + \sqrt{5} }2+54+5+45+1 \\ </p><p></p><p>\frac{10 + 4 \sqrt{5} }{2 + \sqrt{5} }2+510+45 \\ </p><p></p><p>\frac{(10 + 4 \sqrt{5})(2 - \sqrt{5}) }{(2 + \sqrt{5})(2 - \sqrt{5}) }(2+5)(2−5)(10+45)(2−5) \\ </p><p></p><p>\frac{20 - 10 \sqrt{5} + 8 \sqrt{5} - 20 }{4 - 5}4−520−105+85−20 \\ </p><p></p><p>\frac{ - 2 \sqrt{5} }{ - 1}−1−25 \\ </p><p></p><p>2 \sqrt{5}25 \\ </p><p></p><p>

Similar questions