Math, asked by ariana915, 10 months ago

if a² - 3a-1 = 0, find the value of a^2+1/a^2
answer with steps please​

Answers

Answered by RvChaudharY50
17

Qᴜᴇsᴛɪᴏɴ :-

if a² - 3a-1 = 0, find the value of a^2+1/a^2 ?

Sᴏʟᴜᴛɪᴏɴ :-

→ a² - 3a - 1 = 0

Taking a common ,

→ a(a - 3 - 1/a) = 0

→ (a - 1/a) = 3

Squaring Both sides now,

→ (a - 1/a)² = (3)²

using (x - y)² = x² + y² - 2xy in LHS we get,

→ (a)² + (1/a)² - 2 * (a) * (1/a) = 9

→ a² + 1/a² - 2 = 9

→ (a² + 1/a²) = 9 + 2

(a² + 1/a²) = 11 (Ans.)

____________________

Extra :-

• (A+B)² = A² + 2•A•B + B²

• (A-B)² = A² - 2•A•B + B²

• A² - B² = (A+B)•(A-B)

• (A+B)² = (A-B)² + 4•A•B

• (A-B)² = (A+B)² - 4•A•B

• (A+B)³ = A³ + 3•A•B•(A+B) + B³

• (A-B)³ = A³ - 3•A•B•(A-B) + B³

• A³ + B³ = (A+B)(A² - A•B + B²)

• A³ - B³ = (A-B)(A² + A•B + B²)

• (A+B+C)² = A² + B² + C² + 2•(A•B + B•C + C•A)

Answered by Anonymous
11

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{  \:  {a}^{2} - 3a - 1 }}}

{\bf{\blue{\underline{Now:}}}}

Divide by a,

{\implies{\sf{   \: \frac{ {a}^{2} }{a}  -  \frac{3a}{a}  -  \frac{1}{a}   = 0}}} \\  \\

{\implies{\sf{   \: a - 3 -  \frac{1}{a}   = 0}}} \\  \\

{\implies{ \boxed{\sf{   \: a  -  \frac{1}{a}   = 3}}}} \\  \\

Squaring both side,

{\implies{\sf{   \: \bigg( a -  \frac{1}{a}     \bigg)^{2} = ( {3)}^{2} }}} \\  \\

{\implies{ \boxed{\sf{\purple { \:(x - y) ^{2}  } =  {x}^{2} +  {y}^{2}  - 2xy }}}} \\  \\

{\implies{\sf{   \:  {a}^{2}  + \frac{1}{ {a}^{2}  }  - 2 \times a \times  \frac{1}{a}   = 9}}} \\  \\

{\implies{\sf{   \:  {a}^{2}  + \frac{1}{ {a}^{2}  }  - 2    = 9}}} \\  \\

{\implies{\sf{   \:  {a}^{2}  + \frac{1}{ {a}^{2}  }      = 9 + 2}}} \\  \\

{ \boxed{\purple{\sf{   \:  {a}^{2}  +  \frac{1}{ {a}^{2}  }      = 11}}}} \\  \\

Similar questions