Math, asked by alishba3459, 1 month ago

if a² -4a-1=0 find 3a³+3/a³​

Answers

Answered by jaiaggarwal2425
0

Answer:

f a + b + c = 5, a2 + b2 + c2 = 27, and a3 + b3 + c3 = 125

Answered by tennetiraj86
1

Step-by-step explanation:

Given :-

a²-4a-1 = 0

To find :-

Find the value of 3a³+(3/a³) ?

Solution :-

Given that

a²-4a-1 = 0

=> a²-(2×2×a) -1 = 0

=> a²-2(a)(2) -1 = 0

=> a²-2(a)(2) = 1

On adding 2² both sides then

=> a²-2(a)(2) +2²= 1+2²

=> (a-2)² = 1+4

=> (a-2)² = 5

=> a-2 = ±√5

=> a = 2±√5

Therefore, a = 2+√5 or 2-√5

If a = 2+√5 then 1/a = 1/(2+√5)

On Rationalising the denominator then

=> [1/(2+√5)]×[(2-√5)/(2-√5)]

=> (2-√5)/[(2+√5)(2-√5)]

=> (2-√5)/[2²-(√5)²]

Since (a+b)(a-b) = a²-b²

=>(2-√5)/(4-5)

=> (2-√5)/(-1)

=> -2+√5

=> 1/a = √5-2

Now,

We know that

(a+b)³ = a³+b³+3ab(a+b)

=> a³+b³ = (a+b)³-3ab(a+b)

Now,

a³+(1/a³) = [a+(1/a)]³-3(a)(1/a)[a+(1/a)]

=> a³+(1/a³) = (2+√5+√5-2)³-3(2+√5+√5-2)

=> a³+(1/a³) = (√5+√5)³-3(√5+√5)

=> a³+(1/a³) = (2√5)³-3(2√5)

=> a³+(1/a³) = 40√5-6√5

=> a³+(1/a³) = 34√5

Now

3a³+(3/a³) = 3[a³+(1/a³)]

=> 3(34√5)

=> 102√5

If a = 2-√5 then 1/a = 1/(2-√5)

On Rationalising the denominator then

=> [1/(2-√5)]×[(2+√5)/(2+√5)]

=> (2+√5)/[(2+√5)(2-√5)]

=> (2+√5)/[2²-(√5)²]

Since (a+b)(a-b) = a²-b²

=>(2+√5)/(4-5)

=> (2+√5)/(-1)

=> -2-√5

=> 1/a = -2-√5

Now,

We know that

(a+b)³ = a³+b³+3ab(a+b)

=> a³+b³ = (a+b)³-3ab(a+b)

Now,

a³+(1/a³) = [a+(1/a)]³-3(a)(1/a)[a+(1/a)]

=> a³+(1/a³) = (2-√5-2-√5)³-3(2-√5-2-√5)

=> a³+(1/a³) = (-√5-√5)³-3(-√5-√5)

=> a³+(1/a³) = (-2√5)³-3(-2√5)

=> a³+(1/a³) = -40√5+6√5

=> a³+(1/a³) = -34√5

Now

3a³+(3/a³) = 3[a³+(1/a³)]

=> 3(-34√5)

=> -102√5

Answer:-

The value of 3a³+(3/a³) is 102√5 or -102√5

Used formulae:-

→ The Rationalising factor of a+√b is a-√b

→(a+b)(a-b) = a²-b²

→ (a+b)³ = a³+b³+3ab(a+b)

Similar questions