Math, asked by sunandank104, 2 months ago

if ( a² - 4a -1 ) = 0 find value of
1 (a-1/a)
2 (a+1/a)
3 (a²-1/a²)
4 (a² +1/a²)

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {a}^{2} - 4a - 1 = 0

Divide both sides by 'a', we get

\rm :\longmapsto\:a - 4 -  \dfrac{1}{a} = 0

 \boxed{\bf :\longmapsto\:a -  \dfrac{1}{a} = 4}

completes the proof of part 1.

Now,

we know that,

\rm :\longmapsto\: {(x + y)}^{2} -  {(x - y)}^{2} = 4xy

\rm :\longmapsto\:Replace \: x \: by \: a \: and \: y \: by \: \dfrac{1}{a}

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2} - {\bigg(a - \dfrac{1}{a} \bigg) }^{2} = 4 \times a \times  \dfrac{1}{a}

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2} -  {4}^{2}  = 4

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2} -  16  = 4

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2}   = 4  + 16

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2}   = 20

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) } =  \sqrt{20}

 \boxed{\bf :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) } =  \pm \:  2\sqrt{5}}

Completes the proof of 2.

Now, Squaring both sides, we get

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a} \bigg) }^{2}  =  ( \pm \: 2\sqrt{5})^{2}

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} } + 2 \times a \times  \dfrac{1}{a}  = 20

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} } + 2   = 20

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  = 20 - 2

 \boxed{\bf :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  = 18}

Completes the proof of part 4.

Now,

\rm :\longmapsto\: {a}^{2} - \dfrac{1}{ {a}^{2} }

 \rm \:  \:  =  \: {\bigg(a + \dfrac{1}{a} \bigg) }{\bigg(a - \dfrac{1}{a} \bigg) }

 \rm \:  \:  =  \: ( \pm \: 2 \sqrt{5}) \times 4

 \rm \:  \:  =  \:  \pm \: 8 \sqrt{5}

Hence,

 \boxed{\bf :\longmapsto\: {a}^{2} - \dfrac{1}{ {a}^{2} } \:  =  \:  \pm \: 8 \sqrt{5}  }

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions