if a²+a+1=0 find(1-a+a²) (1+a-à²)
Answers
Answered by
1
Answer:
Since formula for a^3 -b^3 = (a-b) (a^2 +ab +b^2)
.
therefore,
a^3 -1 = (a-1)(a^2 +a +1) =(a-1) (0) =0
.
a^3= 1. ---------( i )
.
.
Since given that a^2 +a+1 =0,
hence, a+1 = -a^2 --------(ii)
and a^2 +1 = -a. --------(iii)
.
Now,
(1-a+ a^2) (1+a- a^2)= (a^2 +1 -a) (1+a - a^2) = (-a -a) (-a^2 -a^2)
{from equations ii and iii}
.
therefore,
(1-a+ a^2) (1+a- a^2) = (-2a) (-2 a^2) = 4 (a^3)
.
from i, we know that a^3=1,
.
Hence, (1-a+ a^2) (1+a- a^2)= 4×1 = 4.
Similar questions